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Two-stage algorithms for global optimization are meta-heuristics consisting
of a global and a local stage, which are executed alternatingly [3, p. 14]. The
global stage is responsible for exploration, the local one for exploitation. The
local stage is usually understood as a local search algorithm started at a certain
point and running until convergence is detected. As this is quite expensive
in terms of function evaluations, the global stage ideally has the capability
of carefully selecting promising starting points [3, p. 66]. This task shall be
denoted basin identification. Originally, it was accomplished by conventional
clustering methods [3, pp. 95–116], but nowadays more refined methods have
been developed, which are not necessarily clustering methods in a strict sense
anymore [2].

In this work, we directly compare two basin identification methods regard-
ing their ability to detect distinct attraction basins. Correspondingly, the task
of approximating all or at least several local optima of a multimodal objective
function in one optimization run has received increased attention of the opti-
mization community in recent years. It is clear that the aim of finding, say, the
best k optima is only a slight shift in perspective, as global optimization can be
viewed as a special case of multimodal optimization. This change in perspective
may be partly due to the rise of a-posteriori approaches for multiobjective opti-
mization, where it is considered a critical property of the algorithms that they
are able to generate whole Pareto front approximations, and it is left to the user
to finally choose one of the available solutions. In order to enable an informed
decision, it was already argued in [1] that alternative solutions in the search
space are valuable in multiobjective optimization, even if one point in objective
space has been selected. The same argument may be utilized for multimodal
optimization, such that one wants to obtain the set of best solutions not only
for finding the global optimum therein but also to have alternatives at hand
when the seemingly best solution cannot be implemented.

In this work, we compare two approaches on their own, namely topographical
selection and nearest-better clustering, regarding their ability to identify the
distinct attraction basins of multimodal functions. We show that both have
different strengths and weaknesses, as their behavior is very dependent on the
problem instance. Thus, we try to build regression models on experimental
data to predict appropriate parameter values based on the dimension and the
number of points in the sample. We admit that the resulting prediction models
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are still very rough and somewhat depend on the number of optima employed
in the experiments. However, we think the relatively low values chosen by us
for this parameter correspond to a realistic application scenario.

Additionally, we repeat the recommendation to always use a sampling as uni-
form as possible, because this increases the precision of the basin identification.
By using a more expensive sampling algorithm, such as maximin reconstruc-
tion, it is possible to further improve the performance as against quasirandom
sequences. If it is not possible to control the sampling, a basin identification
method robust to outliers must be sought.

References
[1] Mike Preuss, Boris Naujoks, and Günter Rudolph. Pareto set and EMOA

behavior for simple multimodal multiobjective functions. In ThomasPhilip
Runarsson, Hans-Georg Beyer, Edmund Burke, JuanJ. Merelo-Guervós,
L.Darrell Whitley, and Xin Yao, editors, Parallel Problem Solving from Na-
ture - PPSN IX, volume 4193 of Lecture Notes in Computer Science, pages
513–522. Springer, 2006.

[2] Aimo Törn and Sami Viitanen. Topographical global optimization. In
Christodoulos A. Floudas and Panos M. Pardalos, editors, Recent Advances
in Global Optimization, Princeton Series in Computer Sciences, pages 384–
398. Princeton University Press, 1992.

[3] Aimo Törn and Antanas Žilinskas. Global Optimization, volume 350 of Lec-
ture Notes in Computer Science. Springer, 1989.

2


