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Abstract— This papers proposes a novel self–adaptive scheme

for the evolution of crucial control parameters in Evolution-
ary Algorithms. More specifically, we suggest to utilize the
Differential Evolution algorithm to endemically evolve its own
control parameters. To achieve this, two simultaneous instances
of Differential Evolution are used, one of which is respon-
sible for the evolution of the crucial user–defined mutation
and recombination constants. This self–adaptive Differential
Evolution algorithm alleviates the need of tuning these user–
defined parameters while maintains the convergence proper-
ties of the original algorithm. The evolutionary self–adaptive
scheme is evaluated through several well–known optimization
benchmark functions and the experimental results indicate that
the proposed approach is promising.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are well-established nature

inspired optimization methods [1]. The broad class of EAs

has demonstrated numerous methods that have been effec-

tively and successfully applied to numerous difficult, real-

world optimization problems [1]–[3]. One of the well known

and widely used EAs is the Differential Evolution (DE) algo-

rithm [4]–[6]. DE is capable of handling non-differentiable,

nonlinear, multimodal and noisy objective functions. Many

comparative studies confirm its robust and effective capabili-

ties, also it is stated that in many cases DE outperforms many

other well known Evolutionary Computational approaches in

terms of convergence speed and quality of solutions [5], [7].

DE has three crucial user–defined control parameters: (a) the

mutation constant (F) controlling the mutation strength, (b)

the recombination constant (CR), and (c) the population size

(NP). The originally proposed DE keeps all three control

parameters fixed during the evolution process.

Although, in their original study, Storn and Price state that

the control parameters of DE are easy to choose, several

recent works [8]–[11] indicate that effectiveness, efficiency

and robustness of the DE algorithm strongly depend on

their values. Moreover, their optimal values are affected

by the objective function and the computational time and

accuracy requirements. The sensitivity of the DE algorithm

to its control parameters can lead to significant performance

deterioration. Numerous studies have shown that both the

convergence rate and speed of the DE algorithm depends

on the control parameters (especially the mutation constant).

Additionally, due to the mutation operator of the DE, in-

correct (i.e. very small) values of the mutation constant
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lead to diversity loss, since the new individuals computed

by the mutation operator do not substantial differ from

their parents. On the other hand, very large values of the

mutation constant excessively amplify the parents, leading

to convergence problems.

To overcome the aforementioned problems, the user has to

choose appropriate values either by a preliminary testing and

hand–tuning or by employing a (self–)adaptive procedure.

Self–adaptation approaches have proved to be very gainful

in evolutionary algorithm literature (see for example [1],

[12], [13]). Self–adaptation is the procedure of allowing an

evolutionary task to adapt itself to a given class of prob-

lems without any user interaction. In Differential Evolution

literature, self-adaptive schemes are usually applied on the

mutation and/or the recombination control parameters. The

automatic adaptation of those parameters solves problems

stemming from inappropriate parameter values and may have

the effect of increased convergence rates [9], [14], [15].

The main objective of this study is to propose a new

evolutionary self–adaptive scheme that can be incorporated

to evolve the mutation constant of the Differential Evolu-

tion algorithm. The proposed self–adaptive DE algorithm

alleviates the need of tuning the user–defined mutation and

recombination constants, while maintains the convergence

properties of the original algorithm. A similar approach

that incorporates the DE algorithm to manipulate critical

heuristic parameters of the Particle Swarm Optimization

(PSO) method has been proposed in [16] and has been

empirically demonstrated to be efficient. Other self–adaptive

DE approaches include: Zaharie’s self-adaptive scheme [17],

the Differential Evolution with Self Adapting Populations

(DESAP) [8], the Fuzzy Adaptive Differential Evolution

(FADE) [18], the Self–adaptive Differential Evolution al-

gorithm (SaDE) [14], [15], the Self-adaptive Pareto DE

(SPDE) [19], and the recently proposed self–adapting DE

algorithms by Brest et al. (jDE) [10] and by Salman et al.

(SDE) [9].

The rest of the paper is organized as follows. In Section II

the DE algorithm is briefly described. In Section III we

propose the self–adaptive Differential Evolution algorithm,

while Section IV is devoted to the presentation and the

discussion of the experimental results. The paper ends with

concluding remarks and some pointers for future work.

II. THE DIFFERENTIAL EVOLUTION ALGORITHM

Differential Evolution [4] is a stochastic parallel direct

search method, which utilizes concepts borrowed from the

broad class of EAs. The method typically requires few



control parameters. Experimental results have shown that DE

has good convergence properties and outperforms other well

known EAs [4], [6], [7], [20].

More specifically, DE is a population–based stochastic

algorithm that exploits a population of potential solutions,

individuals, to effectively probe the search space. The popu-

lation of individuals is randomly initialized in the optimiza-

tion domain with NP, D–dimensional, vectors following a

uniform probability distribution. Individuals evolve over suc-

cessive iterations to explore the search space and locate the

minima of the objective function. Throughout the execution

process, the user–defined population size, NP, is fixed. At

each iteration, called generation, new vectors are derived

by the combination of randomly chosen vectors from the

current population. This operation in our context can be

referred to as mutation, while the outcoming vectors as mu-

tant individuals. Each mutant individual is then mixed with

another, predetermined, vector – the target vector – through

an operation called recombination. This operation yields the

so–called trial vector. Finally, the trial vector undergoes the

selection operator, according to which it is accepted as a

member of the population of the next generation only if it

yields a reduction in the value of the objective function f
relative to that of the target vector. Otherwise, target vector

is retained in the next generation.

The search operators efficiently shuffle information among

the individuals, enabling the search for an optimum to focus

on the most promising regions of the solution space. Next,

we briefly describe the search operators that were considered

in this paper.

A. Mutation Operators

Here we describe the original mutation operators proposed

in [4]. Specifically, for each individual xi
g , i = 1, . . . , NP,

where g denotes the current generation, the mutant individual

vi
g+1 can be generated according to one of the following

equations:

vi
g+1 = xbest

g + F (xr1
g − xr2

g ), (1)

vi
g+1 = xr1

g + F (xr2
g − xr3

g ), (2)

vi
g+1 = xi

g + F (xbest
g − xi

g) + F (xr1
g − xr2

g ), (3)

vi
g+1 = xbest

g + F (xr1
g − xr2

g ) + F (xr3
g − xr4

g ), (4)

vi
g+1 = xr1

g + F (xr2
g − xr3

g ) + F (xr4
g − xr5

g ), (5)

where xbest
g is the best member of the previous generation,

r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,NP}, are ran-

dom integers mutually different and not equal to the running

index i, and F > 0 is a real parameter, called mutation or

scaling factor. The user–defined mutation constant, controls

the amplification of the difference between two individuals,

and is used to prevent the risk of stagnation, of the search

process. It is also mainly responsible for the convergence rate

of the algorithm. Thus, an inappropriate mutation constant

value can cause deceleration of the algorithm and decrease

of the population diversity.

Trying to rationalize the above equations, we observe that

Eq. (2) is similar to the crossover operator employed by

some Genetic Algorithms; while Eq. (1) is derived from

Eq. (2), by substituting the best member of the previous

generation, xbest
g , for the random individual xr1

g . Eqs. (3),

(4) and (5) are modifications obtained by the combination

of Eqs (1) and (2). It is clear that more mutation operators

can be generated using the above ones as building blocks,

such as the trigonometric mutation operator [21] and recently

proposed genetically programmed mutation operators [22].

The recently proposed trigonometric mutation opera-

tor [21] performs a mutation according to the following

equation, with probability τµ:

vi
g+1 = (xr1

g +xr2
g +xr3

g )/3+(p2−p1)(x
r1
g −xr2

g )+

+ (p3−p2)(x
r2
g −xr3

g )+(p1−p3)(x
r3
g −xr1

g ), (6)

and with probability (1 − τµ), the mutation is performed

according to Eq. (2). Here, τµ is a user defined parameter,

typically set around 0.1. The values of pm, m = {1, 2, 3}
and p′ are obtained through the following equations:

p1 =
∣

∣f(xr1
g )
∣

∣ /p′,

p2 =
∣

∣f(xr2
g )
∣

∣ /p′,

p3 =
∣

∣f(xr3
g )
∣

∣ /p′, and

p′ =
∣

∣f(xr1
g )
∣

∣+
∣

∣f(xr2
g )
∣

∣+
∣

∣f(xr3
g )
∣

∣ .

For the rest of the paper, we call DE1, DE2, . . . , DE6

the DE algorithm that uses Eq. (1), Eq. (2), . . . , Eq. (6) as

the mutation operator, respectively.

B. Recombination and Selection Operators

Having performed the mutation, the recombination oper-

ator is subsequently applied to further increase the diversity

of the population. To this end, the mutant individuals are

combined with other predetermined individuals, called the

target individuals. Specifically, for each component l (l =
1, 2, . . . , D) of the mutant individual vi

g+1, we randomly

choose a real number r in the interval [0, 1]. Then, we

compare this number with the user–defined recombination

constant, CR. If r 6 CR, then we select, as the l–th

component of the trial individual ui
g+1, the l–th component

of the mutant individual vi
g+1. Otherwise, the l–th component

of the target vector xi
g becomes the l–th component of the

trial vector. This operation yields the trial individual. It is

evident that if the value of the recombination constant is too

small (close to zero) the effect of the mutation operator is

cancelled, since the target (and not the mutant) vector will

become the new trial vector.

Finally, the trial individual is accepted for the next gen-

eration only if it reduces the value of the objective function

(selection operator):

ui
g+1 =

{

vi
g+1 if f(vi

g+1) < f(xi
g)

xi
g otherwise

. (7)

III. EVOLUTIONARY SELF–ADAPTIVE DIFFERENTIAL

EVOLUTION

This section briefly describes the proposed approach. The

Evolutionary Self–Adaptive Differential Evolution (ESADE)



algorithm is a self–adaptive scheme that adjust the two cru-

cial DE’s control parameters, namely the mutation constant

(F) and the recombination constant (CR). The population size

(NP) is fixed during the evolution process. More specifically,

a separate Differential Evolution algorithm is utilized to

adapt the mutation constant of the main algorithm. To this

end, we utilize two different Differential Evolution levels; the

first one for evolving the mutation constant and the second

one for actually optimizing the objective function.

More specifically, in the first evolutionary level, Differen-

tial Evolution uses one–dimensional individuals xg = {Fg}
to initialize its population, where Fg is a possible mutation

constant value used by the second evolutionary process. In

practice, the fixed value of the mutation constant is usually in

the range (0.1, 1.0]. Although, smaller values lead to better

exploitation of the local neighborhood, may also lead to

premature convergence to a local minimum. On the other

hand, larger values result in better exploration of the search

space, but also in slower convergence rates. One could

choose to initialize the mutation constant with a relatively

large value and gradually decrease it, but this approach tends

to be inefficient and extremely problem dependent.

Thus, the proposed evolutionary adaptation scheme ini-

tializes the one–dimensional individuals with random values

from the normal distribution, with mean value 0.5 and

standard deviation 0.3. This choice has been experimentally

proved to be a good starting point [14], [15].

After the initialization of the individuals of the first evolu-

tionary level, one generation of the second evolutionary level

is performed to determine the fitness value of each one. More

specifically, the objective function value of the best individual

of the second evolutionary level (i.e. f(xbest
g )) is assigned

as the fitness value of the respective individual of the first

evolutionary level. It must be noted that the first evolutionary

level evolves the mutation constant and, simultaneously, the

second evolutionary level minimizes the objective function

using that mutation constant.

It is clear that incorporating a relatively large population

size for the first evolutionary level will drastically increase

the objective function evaluations needed, while may hinder

the fast evolution of the mutation constant. To this end, we

have employed the smallest possible population having only

six individuals.

Regarding the optimal value of the recombination constant

(CR), it must be noted that is much more sensitive to the

properties and complexity of the optimization problem (e.g.

dimensionality, multimodality, etc.). A proper choice of the

recombination constant may lead to improved performance,

while a wrong choice usually results in severe performance

deterioration. Moreover, experimental results indicate that

optimal values for the recombination constant usually fall

within a small range, in which the algorithm can perform

consistently well on complex problems [14], [15]. One

can try to evolve the recombination constant utilizing the

proposed evolutionary process used for the mutation con-

stant. However, the Differential Evolution algorithm seems

THE ESADE ALGORITHM

0: Begin
1: Initialize the two populations Pop1, Pop2

(six and NP individuals respectively)
2: Evaluate the fitness of the Pop1

3: Repeat

4: For i = 1 to 6 Do /*level one*/
/* level two*/

5: Evolve for one generation Pop2 using DE
with F = Fi and CR = N(0.6, 0.1)

6: Mutation(F i
g ) → Mutantig

7: Recombination(Mutantig ) → Trialig
8: Evaluate Fi with f(Fi) = f(best(Pop

2
))

9: If f(Trialig ) 6 f(F i
g) Then

10: accept Trialig for the next generation

11: EndIf
12: EndFor

13: Until the termination criteria are satisfied
14: End

more sensitive to inappropriate recombination constant val-

ues and the experimental results are rather random; there

exist instances where rapid convergence is achieved and in-

stances where the algorithm exhibits significantly decreased

convergence speed and success rate. Thus, the proposed

algorithm employs a simple adaptation scheme and resets

the recombination constant at every generation of the first

evolutionary level. Specifically, a random value from the

normal distribution (with mean value 0.6 and standard de-

viation 0.1) is assigned and then, if needed, is restricted in

the range [0.0, 1.0]. Experimental results indicate that this

specific range aids DE to successfully tackle many different

optimization tasks. The proposed approach is outlined in the

above algorithmic scheme.

To depict the evolution of the mutation constant, we have

applied ESADE on the Levy No. 5 test function (see IV-A.8

below). At the top of Figure 1 the values of the mutation

constant are demonstrated, while at the bottom the fitness

of the best individual is illustrated. It is clear that, ESADE

initially explores the parameter’s search space and then

converges to values around 0.6.

Fig. 1. ESADE: (Top) Evolution of the mutation constant, (Bottom) Fitness
value of the best individual (Levy No. 5)

IV. EXPERIMENTAL RESULTS

We implemented and tested the proposed Evolutionary

Self–adaptive DE scheme on a large number of real parame-



ter optimization benchmark functions. In this study we report

experimental results from ten well–known minimization test

functions.

The computational experiments were performed utilizing

a DE interface developed in C++, using GNU compiler

collection (gcc) version 3.4.6 on a Debian GNU Linux

operating system. For each test function and each mutation

operator, we have conducted 100 independent runs. The

mutation and crossover constants of the first evolutionary

level and for all six classic DE mutation operators, have fixed

values F = 0.5 and CR = 0.7, respectively. In Table I the

parameter setup used in the numerical experiments conducted

is summarized. Specifically, D denotes the dimensionality

of the problem, NP stands for the population size used for

each function, while MaxGen is the maximum number of

generations allowed.

Notice that both ESADE and DE algorithms had the same

termination criteria; the algorithm was stopped: i) when

it reached the Maximum Number of Function Evaluations

(MNFE), or ii) when the solution was computed with the

prespecified accuracy. MNFE can be calculated through the

following equation: MNFE = NP ·MaxGen.

No Test function D NP MaxGen

1 Sphere function 30 50 5000
2 Rosenbrock’s saddle 2 30 1000
3 Step function 5 20 1000
4 Quartic function 30 100 2000
5 Shekel’s foxholes 2 30 1000
6 Corana’s parabola 4 15 2000
7 Griewangk’s function 10 50 10000
8 Levy No.5 function 2 40 1000
9 Rastrigin function 10 40 3000

10 Ackley function 30 40 3000

TABLE I

PARAMETER SETUP VALUES

Next, we will briefly report the benchmark optimization

functions used along with their global minima and minimiz-

ers in the search space.

A. Test Functions

The interested reader can find detailed information about

the test functions used here in [4], [23]–[27].

1) Sphere:

f1(x) =

30
∑

j=1

x2
j , xj ∈ [−5.12, 5.12]. (8)

The sphere test function is a considered to be a simple

minimization problem. The minimum is f∗

1 (0, 0, . . . , 0) = 0.

2) Rosenbrock’s Saddle:

f2(x) = 100 · (x2
1 − x2)

2 + (1 − x1)
2, (9)

xj ∈ [−2.048, 2.048].

This is a two–dimensional test function, which is known to be

relatively difficult to minimize. The minimum is f∗

2 (1, 1) =
0.

3) Step Function:

f3(x) = 30 +
5
∑

j=1

⌊xj⌋, xj ∈ [−5.12, 5.12]. (10)

The minimum of this function is f∗

3 (−5−ξ, . . . ,−5−ξ) = 0,

where ξ ∈ [0, 0.12]. This function exhibits many flat regions

that can cause search stagnation.

4) Quartic Function:

f4(x) =

30
∑

j=1

(

j · x4
j + η

)

, (11)

where xj ∈ [−1.28, 1.28]. This is test function is designed

to evaluate the behavior of minimization algorithms in the

presence of noise. To this end, η is a random variable

following the uniform distribution in the range [0, 1]. The

inclusion of η makes f4 more difficult to optimize. The

functional minimum of the function is f∗

4 (0, 0, . . . , 0) 6

30 ·E[η] = 15, where E[η] is the expectation of η.

5) Shekel’s Foxholes:

f5(x) =
1

0.002 + ψ1(x)
, xj ∈ [−65.536, 65.536], (12)

where, ψ1(x) =
∑24

i=0
1/(1 + i +

∑2

j=1
(xj − aij)

6). The

parameters for this function are:

ai1 = {−32,−16, 0, 16, 32}, where

i = {0, 1, 2, 3, 4} and ai1 = aimod 5,1

ai2 = {−32,−16, 0, 16, 32},where

i = {0, 5, 10, 15, 20} and

ai2 = ai+k,2, k = {1, 2, 3, 4}.

The global minimum of f∗

5 (−32,−32) = 0.998004.

6) Corana Parabola:

f6(x) =

4
∑

j=1

{

ψ2(xj), if |xj − zj| < 0.05,
ψ3(xj), otherwise.

(13)

where ψ2(xj) = 0.15 (zj − 0.05sign(zj))
2
dj , ψ3(xj) =

djx
2
j , zj = ⌊5|xj | + 0.49999⌋sign(xj)0.2 and dj =

{1, 1000, 10, 100}. The function is characterized by a mul-

titude of local minima, increasing in depth as one moves

closer to the origin. The global minimum of the function is

f∗

6 (x) = 0, for x∗j ∈ (−0.05, 0.05).

7) Griewangk’s Function:

f7(x) =

10
∑

j=1

x2
j

4000
−

10
∏

j=1

cos

(

xj√
j

)

+ 1, (14)

xj ∈ [−400, 400].

This test function is riddled with local minima. The global

minimum of the function is f∗

7 (0, 0, . . . , 0) = 0.



8) Levy No.5 Function:

f8(x) = σ1σ2 + (x1 + 1.42513)2 + (x2 + 0.80032)2, (15)

where xi ∈ [−10, 10], i = 1, 2, and σ1 and σ2 are given by:

σ1 =
5
∑

i=1

[

i cos
(

(i− 1)x1 + i
)

]

,

σ2 =

5
∑

j=1

[

j cos
(

(j + 1)x2 + j
)

]

.

There exist about 760 local minima and one global mini-

mum with function value f∗

8 (x) = −176.1375, located at

x∗ = (1.3068, 1.4248). The large number of local optimiz-

ers makes it difficult for any method to locate the global

minimizer.

9) Rastrigin Function:

f9(x) = A · n+
n
∑

i=1

x2
i −A · cos(ω · xi) (16)

A = 10 ; ω = 2 · π ; xi ∈ [−5.12, 5.12].

The Rastrigin Function is a typical example of non-

linear multimodal function. This function is a fairly difficult

problem due to its large search space and its large number

of local minima. The global minimum of the function is

f∗

9 (0, 0, . . . , 0) = 0.

10) Ackley Function:

f10(x) = − 20 · exp



−0.2

√

√

√

√

1

n
·

n
∑

i=1

x2
i



− (17)

− exp

(

1

n
·

n
∑

i=1

cos(2πxi)

)

+ 20 + e,

where xi ∈ [−32.768, 32.768]. The global minimum of the

function is f∗

10(0, 0, . . . , 0) = 0.

B. Presentation of the Results

To evaluate the proposed ESADE algorithm, we compared

its performance against the six classic DE mutation operators

presented in Section II on the ten test functions described

above. During the development phase of the proposed algo-

rithm several different approaches have been considered. The

obtained experience can be summarized below. Preliminary

experiments included the evolution of the recombination

constant alone, and the evolution of both the mutation

and recombination constants. The obtained results for these

approaches were dissatisfying. The success rates were rather

low, while the location of the global minimum demanded a

significantly increased amount of function evaluations. The

main problem was that the first evolutionary level usually

assigned values to the control parameters (especially to the

recombination constant) that spread all over the allowed

range. Thus, the poorly selected values prevented the con-

vergence of the DE algorithm.

To utilize the proposed algorithm, one can apply any DE

mutation strategy for the evolution of the mutation constant

at the first evolutionary level. Extensive experimental results

demonstrated that the utilization of an explorative mutation

strategy, such as DE/rand/1 or DE/rand/2, enhances the effi-

ciency and effectiveness of the algorithm [28]. Additionally,

a hybrid approach that balances the explorative and the

exploitive behavior of the original DE mutation strategies

can also be employed [29]. The usage of such approach, can

firstly explore for promising regions of the search space and

then exploit the aforementioned region for an optimal value.

In this study, due to space restrictions, we report experimental

results of the application of the DE5 mutation strategy (i.e.

DE/rand/2) for the first evolutionary level.

We performed 100 independent runs for each algorithm

and each problem. The following notation is used in the

Tables: Min indicates the minimum number of function

evaluations for the experiments that reached a solution (i.e.

a global minimum); Max is the maximum number of func-

tion evaluations; Mean is the average function evaluations

number and St.D. is the standard deviation. Finally, the

last column, Success is the percentage of experiments that

reached a solution.

Tables II-XI summarize the experimental results. The

experimental results on the test functions indicate that the

proposed approach is promising and that exhibits success

rate equal or better than the original DE algorithm, at the

expense of an increase of the average function evaluations

required.

Finally, Figure 2 exhibits boxplots summarizing the last

iteration values of the mutation constant for all the test

problems. Each boxplot depicts the obtained values for the

mutation constant for all the experiments. The box has lines

at the lower quartile, median, and upper quartile values. The

lines extending from each end of the box (whiskers) exhibit

the range covered by the remaining data. Notches represent

a robust estimate of the uncertainty about the median. It is

clear that, for all benchmark functions, the mutation constant

takes values around the 0.5 value.

Since, values for the mutation constant F ≈ 0.5 are

Fig. 2. The evolution of the mutation constant



known to be efficient, the experimental results indicate that

the proposed algorithm is capable to automatically compute

appropriate values for the control parameters of the DE

algorithm. So, for an unknown optimization problem the

ESADE algorithm is capable to reach high success rates at

the expense of a slight increase of the function evaluations

required. Thus, with the application of the ESADE algorithm

locating optima becomes feasible on a first–time basis for a

given unknown problem, without the need for user interven-

tion.

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 76120 81760 89320 2636.03 100
ESADE2 112360 117001 120000 1837.47 83
ESADE3 104920 109142 112600 1583.95 100
ESADE4 98680 111209 120000 4274.81 98
ESADE5 N/A N/A N/A N/A N/A
ESADE6 97960 103170 111640 2449.98 100

DE1 59720 62703.2 65520 905.9 99.9
DE2 92280 95449.3 98560 959.3 100
DE3 69680 72583.3 76680 904.1 100
DE4 93520 98079.6 101680 1138.8 100
DE5 N/A N/A N/A N/A N/A
DE6 79400 81931.0 84920 870.5 100

TABLE II

COMPARATIVE RESULTS FOR THE ACKLEY TEST FUNCTION

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 915 1391.0 2265 240.9 76
ESADE2 1635 2467.0 3255 309.0 98
ESADE3 1995 2434.9 3435 229.6 98
ESADE4 1275 2244.6 24855 2537.6 84
ESADE5 2355 3228.9 4335 466.0 100
ESADE6 1725 2359.5 3165 289.3 99

DE1 705 1099.1 1845 174.4 67.0
DE2 1485 2055.8 2700 208.9 98.8
DE3 1005 1776.2 3765 226.9 98.1
DE4 1155 1791.7 2415 189.2 97.9
DE5 1770 2894.6 3885 282.4 100
DE6 1395 1966.5 3375 191.2 99.1

TABLE III

COMPARATIVE RESULTS FOR THE CORANA TEST FUNCTION

V. CONCLUSIONS

The performance of the DE algorithm is sensitive to

inappropriate values of the control parameters. Poor values

can lead to significant performance deterioration and/or slow

convergence. Thus, the incorporation of an intelligent adap-

tation method is compulsory.

In this study, we presented an evolutionary self–adaptive

scheme for adjusting Differential Evolution’s mutation and

recombination constants. A separate Differential Evolution

algorithm is employed to evolve the mutation constant F,

while the recombination constant CR takes values from the

normal distribution.

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 14750 23850 31250 6607.2 6
ESADE2 39950 55715 74750 7892.8 100
ESADE3 56150 108038 222950 28834.9 99
ESADE4 38450 64631 95150 10865.1 66
ESADE5 73550 116453 156650 15163.1 100
ESADE6 28550 50000 66650 8180.5 100

DE1 10100 18764.0 28450 3629.1 7.5
DE2 29450 41799.1 57550 4921.1 100
DE3 25350 56206.1 460000 28581.9 89.8
DE4 25000 52086.1 76150 6875.6 91.9
DE5 64750 85696.6 107550 7734.4 100
DE6 22900 36154.5 53100 4783.7 100

TABLE IV

COMPARATIVE RESULTS FOR THE GRIEWANGK TEST FUNCTION

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 760 1665.1 2680 400.7 70
ESADE2 2680 3695.2 4840 542.4 100
ESADE3 3160 4619.2 7480 1058.9 100
ESADE4 1720 2959.1 4840 680.0 92
ESADE5 3400 5521.6 9160 1073.1 100
ESADE6 2440 3455.2 5560 495.3 100

DE1 920 1425.7 2520 234.9 70.8
DE2 1920 3091.2 4560 384.6 100
DE3 1720 3307.0 18360 933.7 97.3
DE4 1760 2813.3 6000 621.8 97.8
DE5 3120 4864.9 8480 781.9 100
DE6 1840 2987.4 4400 386.2 100

TABLE V

COMPARATIVE RESULTS FOR THE LEVY. 5 TEST FUNCTION

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 4900 10366 16900 2192.3 100
ESADE2 9100 15322 23500 2506.2 100
ESADE3 9100 11998 17500 1887.8 100
ESADE4 7300 13426 25300 3427.4 100
ESADE5 9700 18730 27700 3689.1 100
ESADE6 7900 13498 17500 1944.7 100

DE1 4500 7236.5 11000 1010.1 100
DE2 6300 11440.0 18600 1769.8 100
DE3 3800 7088.1 9800 997.6 100
DE4 4900 11159.0 16200 1776.6 100
DE5 7500 15022.6 23600 2506.6 100
DE6 5200 9801.3 14100 1388.0 100

TABLE VI

COMPARATIVE RESULTS FOR THE QUARTIC TEST FUNCTION

The performance of the proposed approach was evaluated

on ten well–known benchmark optimization functions. The

extensive experimental results of this paper provide evidence

that the proposed approach is promising. The ESADE algo-

rithm exhibits success rates equal or better than the original

DE algorithm, at the expense of an increase of the average

function evaluations required.

To conclude, we believe that ESADE is an attractive alter-

native choice to the original DE, especially on unknown real–



Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 1860 3352.5 4740 605.6 89
ESADE2 5820 7753.2 9420 699.0 100
ESADE3 7620 10582.8 15180 1399.2 100
ESADE4 3300 5348.4 9060 1028.0 100
ESADE5 8340 10410.0 13020 1008.3 100
ESADE6 4740 7386.0 8700 621.1 100

DE1 2220 2871.1 3480 192.7 99.7
DE2 5040 6282.7 7320 393.7 100
DE3 3960 5697.1 6600 346.9 100
DE4 3960 5029.5 6360 298.6 100
DE5 6720 8448.4 9840 484.7 100
DE6 4560 6047.7 7320 378.6 100

TABLE VII

COMPARATIVE RESULTS FOR THE RASTRIGIN TEST FUNCTION

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 570 1074.0 1830 275.5 100
ESADE2 1110 2535.6 3810 477.0 100
ESADE3 1290 2366.4 3990 437.1 100
ESADE4 750 1655.4 3090 425.3 100
ESADE5 2370 3462.6 4530 506.7 100
ESADE6 1290 2870.4 6690 647.5 100

DE1 390 821.5 1230 102.6 100
DE2 1170 1960.4 8790 528.2 97.8
DE3 960 1785.7 3120 301.9 100
DE4 510 1417.2 2010 176.7 100
DE5 1530 2542.0 3630 312.5 100
DE6 1320 2168.9 8130 540.8 97.3

TABLE VIII

COMPARATIVE RESULTS FOR THE ROSENBROCK TEST FUNCTION

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 390 888.2 1470 230.2 56
ESADE2 750 2651.0 3630 481.5 98
ESADE3 1110 2791.2 7230 928.5 100
ESADE4 570 1783.0 2730 493.3 92
ESADE5 1650 3784.8 5790 747.6 100
ESADE6 570 2473.4 3450 482.0 94

DE1 180 741.4 1200 166.2 64.5
DE2 600 1921.3 2940 328.2 98.1
DE3 270 1273.1 11730 447.6 90.7
DE4 60 1500.4 2400 287.5 99.6
DE5 750 2670.3 4050 449.0 100
DE6 630 1930.6 3270 326.2 98.2

TABLE IX

COMPARATIVE RESULTS FOR THE SHEKEL TEST FUNCTION

life optimization tasks, because of the fact that it does not

require parameter tuning. In a future correspondence, we will

investigate the performance of ESADE on high–dimensional

and noisy benchmark functions. Additionally, we will further

investigate the existence of an evolutionary adaptive scheme

for all DE’s crucial parameters, in an attempt to construct a

totally self–adapting version of the DE algorithm.

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 55300 65614 78700 4087.8 100
ESADE2 91300 101170 110500 3819.9 100
ESADE3 82900 89776 94900 2059.8 100
ESADE4 75100 90310 105700 7050.1 100
ESADE5 112900 129580 144700 6221.3 100
ESADE6 81700 90022 102100 3906.7 100

DE1 48400 51016 53500 1012.6 100
DE2 78800 82025 84500 1114.4 100
DE3 56800 58834 60600 731.2 100
DE4 78700 81326 83700 1161.3 100
DE5 108600 112823 117000 1448.5 100
DE6 68900 72001 74100 1012.6 100

TABLE X

COMPARATIVE RESULTS FOR THE SPHERE TEST FUNCTION

Mutation Function Evaluations Total
Strategy Min Mean Max St.D. Success

ESADE1 860 1210.7 1700 216.1 13
ESADE2 1340 2176.4 5420 603.1 100
ESADE3 1460 2792.8 12500 2131.0 28
ESADE4 980 3413.3 17300 3944.8 72
ESADE5 1580 2658.8 4580 458.4 100
ESADE6 1340 2354.0 5420 819.6 100

DE1 520 895.7 1440 184.9 3.8
DE2 1000 1884.3 4560 365.8 100
DE3 1020 1403.8 2040 212.1 2.1
DE4 780 1728.1 11800 636.3 46.3
DE5 1180 2477.6 4060 397.7 100
DE6 1020 1994.5 9620 830.9 100

TABLE XI

COMPARATIVE RESULTS FOR THE STEP TEST FUNCTION
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