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Abstract— This paper investigates the performance of trad- Finally, a simulation methodology is implemented to test
ing strategies identified through Computational Intelligence the statistical significance of the best performing stiateg
techniques. We focus on trading rules derived by Genetic jqantified through each approach. Our findings suggest that

Programming, as well as, Generalized Moving Average rules th idel d . | hibit bust
optimized through Differential Evolution. The performance of € widely—used moving average rules exnibit a more robus

these rules is investigated using recently proposed riskgjusted ~ behavior than that of the more complicated GP generated
evaluation measures and statistical testing is carried ouhrough  strategies. However, the hypothesis that the performance

simulation. Overall, the moving average rules proved tobe mre  of these rules can be attributed to well-known statistical
robust, but Genetic Programming seems more promising in - yroperties of the data cannot be rejected. On the other hand,
terms of generating higher profits and detecting novel pattms - . e .
in the data. GP is capable of identifying patterns that cannot be expthin

by traditional stochastic processes, so as to yield excess

. INTRODUCTION returns.
. . ) o The remaining of this paper is organized as follows.
Technical Analysis (TA) focuses on the identification O_fSections Il and 1l briefly describe the Genetic Program-

price patterns and trends, as well as, the use of mechaniggl,y anq the Differential Evolution algorithms. Section IV

rules to generate valuable economic signals (see [1] forj@ jeyoted to the presentation of the generalized moving

thorough description of a number of simple trading ruleshyerage rules, while Section V presents the risk sensitive

Recent surveys [2] suggest that TA has been a major COfarformance measures. The methodology of the simulations
stituent of financial practice in foreign exchange markets,\q he experimental results (and their statistical aiglys
Moreover, a number of empirical as well as theoretical g eyhipited in Sections VI and VII. Finally, the paper ends

studies [3], [4] during the past three decades suggest thaky, 5 discussion and concluding remarks.
the application of TA in the foreign exchange market can

yield substantial excess returns. These findings raisetdoub
on the validity of the efficient market hypothesis. Olson, [5] Il. GENETIC PROGRAMMING
however, argues that abnormal profit opportunities arise du
to temporary inefficiencies which are in accordance with |nthis Section we briefly outline the Genetic Programming
an evolving market. He further argues that the returns gGP) algorithm which was applied to identify new trading
simple trading rules over recent periods have declinedytif nrules. Conceptually, GP constitutes an extension of Geneti
completely disappeared. Algorithms (GAs) in which individuals are no longer fixed-
In this work, we employ Genetic Programming (GP) tdength strings but rather computer programs expressed as
identify novel trading strategies based only on the informasyntax trees [9]. GP individuals consist of function and
tion contained in the history of past price movements. Girminal nodes. Terminal nodes return as output the value
can be considered as a Computational Intelligence algorithof either a constant, or an input variable, or a zero-argumen
that mimics the behavior of an optimizing agent in thedunction. Thus, the arity of terminal nodes is zero. The set
foreign exchange market. In this process it is critical t@f possible terminal nodes is called therminal set, 7.
select a performance measure that accounts not only for tRanction nodes on the other hand, process their inputs to
return obtained from a rule, but also penalizes rules for theompute an output. Thieinction set, 7, is composed of the
risk they undertake. To this end, a recently proposed risitatements and functions available to GP.

sensitive measureXes, is used [6]. The performance of  The primary GP search operators aressover and muta-
the GP identified rules is compared to that of Generalizegon. In crossover, one subtree from each of the two selected
Moving Average (GMA) rules [7]. The parameters of theparents is exchanged between them to form two new indi-
GMA rules are optimized using the Differential Evolutionyiduals (offsprings). The motivation is that useful buildi
(DE) algorithm [8] and the same objective function as tha§locks for the solution of a problem are accumulated in the
used in GP. population and crossover permits the aggregation of good
N.G. Paviidis, M.G. Epitropakis, V.P. Plagianakos, and M.ya- building blo_cks into even petter solutions of the probler [9
hatié ére with ’the .C.omputationaly Int.eI‘Iigence Labor’atoE;epériment Crossover is the predominant GP search operator [9], [10].
of Mathematics, University of Patras, GR-26110 PatraseGrelemail: On the other hand, mutation operates on a single individual
{nEaé’miI;’i?/ﬁgi’:p?évrw?gi@trr?eathbljepzt:?rﬁe%rt) of Economics. Lanmacte?Y 8ltering a random subtree. Next, we briefly describe the
are P ’ GP initialization and the GP operators (selection, crossov
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A. The GP Initialization Langdon [11] proposed theniform crossover operator for
The individuals in the GP population are initialized byGP (GPUX) inspired from the homonymous operator in GAs.

recursively generating syntax trees composed of randomfFUX starts by identifying a tree that representsatremon
chosen function and terminal nodes. The two establish&g9iON between two syntax trees. Each node that lies in the
GP initialization methods are thgrow and thefull method. COMMOon region is considered for crossover with a constant
Both methods require from the user to specify the maximquO_bab'“ty' For nodes that lie in t_he interior o_f the common
initial tree depth. According to the grow method, node£edion GPUX swaps the nodes without affecting the subtrees

are selected randomly from the function and the terminzﬁPOtecj at these nodes. On Fhe contrary, for nodes on the
sets. The grow method, therefore, produces trees of imegupoundary of the common region the subtrees rooted at these

shape, since once a terminal node is inserted the path endlifyf'€s are svv_appe_d. o — _
with this node cannot be extended, even if the maximum >INC€ the diversity of the GP individuals is high during the

initial depth has not been reached. On the other hand, in t&"Y stages of the algorithm, the common region between
full initialization method only function nodes are selatte randomly selected individuals tends to be relatively small

until the maximum initial depth is reached. Beyond that deptand hence GPU?( favors the global exploration of the search
only terminal nodes are chosen to end the branches. TIFRace by swapping large subtrees near the root of the syntax

method results in a balanced tree, every branch of whidffeS- AS the population converges the operator becomes
reaches the maximum initial depth. more and more local, in the sense that the offsprings it

The ramped half and half initialization method [9] em- produces are progressively more similar to their parents. A

ploys both grow and full to construct a GP populationfaxample of GPUX is provided in Fig. 1.

Specifically, ramped half and half aims at initializing awvegy common region
number of GP individuals with maximum depth starting fronparent .=~ -~ parent2 oS

the minimum depth of two up to the maximum initialization
depth. For each depth level half the individuals are con-
structed using the grow, while the remaining individuals ar | ‘
constructed using the full initialization method. To obtai e : & ® .
promising candidate solutions for the evolutionary prgces
it has been proposed to initialize a much larger population

(by a factor of ten) and to select the best performingﬁsf’””gljk OﬁSp””%

individuals [9]. O © &) ®
B. The GP Sdlection Algorithm Q
To derive the individuals that will comprise the population © ® © ® ®

of the next generation, GP initially selects individualsrfr
the current generation. The selection operators that hese b
proposed for genetic algorithms are also applicable to GP. | .

this study, we employed the most commonly encounteré:a' The GP Mutation Operator

one, namelyproportionate selection. We define asE; the The mutation operator in GP randomly selects a node of
fitness of thei-th individual, whereE is the function we the syntax tree and replaces the subtree rooted at theesklect
wish to maximize. Then the probability of selecting thtn node with a newly created tree. This type of mutation is
individual as a parent of an individual of the next generatioknown assubtree mutation. For the creation of the trees

Fig. 1. Uniform crossover operator for GP (GPUX).

(offspring) is equal tg; = E;/ Z;,V:l E;. employed by the mutation operator, the grow initialization
method is employed [9]. Fig. 2 illustrates the workings of
C. The GP Crossover Operator mutation on a GP individual.
The primary GP search operator is crossover. Crossover
operates on two parent individuals and yields two offsping )& )&
Standard crossover randomly selects a node in each paren@ @

tree and then swaps the subtrees rooted at these nodes [9]. ] T~ @

Koza suggests to use 20% probability of selecting as @ @ @ @ @ @

crossover point a function node and to select a terminal no ® @ @

with probability 10%. If an offspring exceeds the maximum

depth it is discarded and the corresponding parent indafidu

takes its place in the population of the next generation.
Standard crossover, however, tends to produce offsprings

that frequently inherit most of their code from one par- lIl. DIFFERENTIAL EVOLUTION

ent, and also favors local adjustments near the leaves ofDifferential Evolution [8] is a stochastic parallel di-

syntax trees [11]. To overcome these limitations, Poli ancect search method, capable of handling non-differergiabl

Fig. 2. Subtree mutation.



nonlinear and multimodal objective functions. DE is a IV. GENERALIZED MOVING AVERAGE RULES

population—based stochastic algorithm that exploits aifiep  The simplest and most common trading rules employ

tion of potential solutions (individuals), to explore theasch 1y 5ing averages (MAs). An MA of length is defined as:
space. The population of individuals is randomly initiatiz

in the optimization domain wittNP, n—dimensional, vectors 1
following a uniform probability distribution. The populah MA(9): = ] ;Pt*i’ t=0,6+1,....N.

size,NP, is fixed throughout the execution of the algorithm. )
At each iteration, calledgeneration, new vectors are The Generalized MA (GMA) rule can be represented by the

derived by the combination of randomly chosen vectortaollo"vmg binary indicator function [7]:

from .the current population. Thig opgration is referreddo a  §(@), = MA(0,), — (1 + (1 —25:_1)0s)MA(0,), (2)
mutation and produces thewtant individuals. Each mutant

individual is then mixed with another, predetermined, wect Where© = [0, 6, 03] are the parameters of the GMA. The
— thetarget vector — through an operation callegtombina- GMA rule returns a buy signal (which is encoded as one),
tion. This operation yields th&ial vector. Finally, the trial When Eq. (2) returns a positive number. A sell signal, on the
vector undergoes theelection operator, according to which other hand, corresponds to a non-positive retum valuesand i
it is accepted as a member of the population of the neficoded as zero. Typicall§; < 0, and M A(6,); is called
generation only if it yields a reduction in the value of thehe short MA, while M A(6,); is the long MA. With this

objective functionf relative to that of the target vector. NextParameter setting the GMA rule identifies an upward trend
we briefly review the basic DE variation operators. when the short MA crosses from below the long MA, and

vice versa. Finallyfs is a parameter introduced to reduce
o the number of false buy and sell signals.
A. DE Variation Operators Fernandez-Rodriguest al. [7] employed Genetic Algo-

The DE search operators efficiently shuffle informatiorﬁitlt]/lr'zs tc: det_cIe_Lmine th(la_ gptimall_ %ar;m_eter valué)z (tor h
among the individuals, enabling the search for an optimur%’ rules. They applied applie €ir approach 1o the

to focus on the most promising regions of the solution spacMad”?_ stocfk marret. Th?r flndln?s lﬂd'%atet th?t Wlftzet?et
The first operator considered here is mutation. Specificall xceplion Of ZEro transactions costs, the best rules areeo

for each individualz}, i = 1,...,NP, whereg denotes the Or;ne()f_d%Ub,:; MA rulefr.] In otherllwo(;dﬁlt >0, 02 > OI,I
current generation, a new individug] (mutant individual) andos = 9. Moreover, Ih€ annuaiized returns, as wet as,
is generated according to the following equation: th_e Sharpe ratio corresponding to the_besF GMA_ rules are
higher than those from the corresponding risk—adjusted buy
and hold strategy. In this paper, we employ the Differential
Evolution algorithm described above to compute and tune

. . . the parameters of GMA rules.
where:c*;est is the best member of the previous generation; P

F > 0 is a real parameter, calledutation constant, which V. RISK SENSITIVE PERFORMANCEMEASURES

controls the amplification of the difference between two A critical aspect for the identification of promising tragin
individuals, and is used to prevent the stagnation of thechea strategies through Computational Intelligence techrscise
process; and,ry € {1,2,...,i—1,i+1,..., NP}, aré the performance evaluation measure. To evaluate the perfor
random integers mutually different and not equal to thgyance of an investment strategy it is necessary to measure
running index. Although there exist many different mutationnot only the increase in capital but also the risk incurrée T
operators [12], [13], we chose to use the one described abaygt performance measure to incorporate risk is the widely—

since it is simple and has the property of fast convergencgnown Sharpe ratio [14]. The Sharpe ratio is defined as:
Having performed mutation, the recombination operator is =

applied to further increase the diversity of the populatitime S = AAtha

mutant individuals are combined with other predetermined T

individuals, called the target individuals. Specificalfgr  wherer is the average retura;? is the variance of the return

each componenit(l = 1,2,...,n) of the mutant individual series, andi»; is an annualization factor that depends on the

vy, We randomly choose a real numberin the interval frequency at which returns are measured. Three drawbacks

[0,1]. Then, we compare this number with treeombination  have been associated with the Sharpe ratio [6]. Firstly, the

constant, CR. If r < CR, then we select, as théth variance term is placed in the denominator, which makes

component of the trial individuak, the I-th component of the ratio numerically unstable whes? is close to zero.

the mutant individuaby. Otherwise, the-th component of Secondly, the returns are measured at one frequency, and

the target vector; becomes thé-th component of the trial hence the measure neglects the risk due to unrealized losses

vector. This operation yields the trial individual. at other frequencies. Finally, the Sharpe ratio negleats th
Finally, the trial individual is accepted for the next gen-clustering of losses and profits.

eration only if it reduces the value of the objective funotio To this end, Gencayt al. [6] have proposed two risk

(selection operator). adjusted performance measures,s and R.gs, that rely

vl =2yt + Falt — al?), (1)

g



on the expected utility framework. The first measukgqs, potentially overlapping time intervalayt;;. The mean utility
is derived from a constant risk aversion utility functionfor At; is:

of the form, u(x) = —exp(—vz), with ~ representing N ~
the coefficient of risk aversion, and denoting the wealth > i1 Atjiu (ARji) SN AL
reached by unit investment. Thus: uj = ===— (O

Y At Y At
o(t) = R(t) — R(t - At), The mean utility of Eq. (7) can be transformed back to an

where R(t) = R(t) + ro(t), R(t) is the total return of past effective return for the horizol\t;, AReq j, using Eq. (6).
trades up to time, andr,(t) is the unrealized return of the Thus, the annualized Reg ; is defined as:

current trading model position. Assuming thafollows the lyear  ~
normal distribution with\(z, 02), the expected utility is: Regr j = mARcﬁ'Ja
etl,)
702 N; N; . .
Elu(z)] = — exp(=( — —-)). where Ater ; = S50 (At;:)2/ 207, Atj;. The multihori-

) ) ) ) zon version ofR.¢ is as before obtained by taking a weighted
The measureX.q is obtained by inverting the expectedyyerage ofR.q ; for different time horizons:

utility: .
o? " w;Regt
Xcﬁ' =T — ’YT Rcﬂ' — Zﬂ—i e -]’
Zj:l wj

To permit the comparison betweeX.; values for differ- with the weights.; being determined through Eq. (5).

ent At the measure is annualized:
lyear ( 702) VI. SIMULATION METHODOLOGY

T 3)
At 2 Simulating exchange rate return series from a Data Gen-

The measure in Eq. (3) still depends on the choicedof €rating Process (DGP), transforming them into prices and
and does not reflect changes occurring at shorter and lond@eding them into a trading model permits us to calculate
horizons. The final form ofX.g, therefore, constitutes a the probability distributions of different performance ane

weighted average oK. .., for n different time horizons: Sures [6], [15]. In turn, we can test the null hypothesis
N that the performance of a trading rule can be attributed to
Zi:l wiXeff,ann(Ati)

. (4) standard statistical properties of exchange rate serigastg
Yo w the alternative that the observed performance is due to the
capability of the rule in detecting patterns that are not in
accordance with traditional DGPs. Further, comparisoms ca

Xeff,ann =

Xcﬁ' =

The weightsuw;, in Eq. (4) are obtained through the follow-

ing formula: be made across rules and DGPs.
w(At) = 1 . (5 We employ three null processes. For the first process we
9+ (k)g( At )) assume that prices follow a Random Walk (RW) with a
90days drift. Consequentlylog returns are generated according to

The X.¢ measure of Eq. (4) is obtained assuming a constafite following equation
risk aversion. A more realistic assumption is that investor B 8
are more risk averse to the clustering of losses than they are e = o+ e, (8)

to the clustering of profits. Thei.z algorithm introduces \here ¢o is the sample mean, and ~ A(0,02). The

two levels of risk aversion: simulated series for the RW model are obtained by adding
pe, AR >0 normally distributed random numbers (with mean zero and
P= { p—, IfAR<O0 ’ standard deviation equal to the sample standard deviation
) N - of the residuals) to the returns mean. The artificial returns
wherep_ > p... The corresponding utility function is: are independent and identically distributed by constomgti
_op(=piAR) for AR > 0 while the simulated price series _fol!ow a randon_1 yvalk Wi'Fh
u(AR) = P+ ' or z the same drift and standard deviation as the original series

11 M, for AR <0 The artificial return series are transformed into priceeseri
A S N by using the first price of the sample. However, according
The return can be obtained by inverting the utility functionto the RW model the volatility of returns is constant which

log(—p. 1) . S _1 contrasts with the stylized fact that the foreign exchange
N0 T oru=Tor ©) market is characterized by time varying volatility [16]. &h
_IOg(kH*”*“) foru < — L ' presence of serial correlation in the second moment of the
’ P+

p= distribution of the exchange rate series motivates the fise o

The computation of the utility for one time horizaAt; GARCH models. GARCH models are nonlinear condition-
is calculated using return®\ R;;, observed at different and ally Gaussian models where the conditional variance depend



on its lagged values, as well as, on past error terms. Timeodels. The non-parametric procedure adopted is called re-

GARCH(1,1) may be written as: sampling [19]. Resampling is in effect drawing with replace
ment from the sample under examination. The suitability
re = o+ ut ©) of this approach in the present context is due to the fact
ug = e/ hy, wheree; ~N(0,1), that it utilizes the empirical distribution function of tata
hy = w+ O‘th—l + Bhy_1. and therefore, it addresses issues such as leptokurtasis an

skewness. Artificial price series are created by bootsingpp
The parameter values of the GARCH(1,1) model are eslrom the residuals of the RW and the standardized residuals
mated by using a Quasi Maximum Likelihood procedure angf the GARCH and ARMA-GARCH in order to calculate the

the simulated series are generated by drawing values fr¥fopapility distributions of the performance measureseund
the standard normal distribution and calculating receigiv ayamination.

Eq. (9). Finally, we employ an ARMA(2,1)-GARCH(1,1)
model so as to take into account possible serial correlation VII. PRESENTATION OFEXPERIMENTAL RESULTS

in both the mean and the variance: The dataset presently employed is the daily noon New
Fe = o+ bi1re1 + ot + Orus_1 + ur, York buying rates for the US Dollar against _th_e Japanese
Yen exchange rate from the H10 Federal Statistical Release.
up = ervhy,  wheree, ~ N(0,1), The 5292 observations cover the period from 3/1/1985 to

he = w+oaui_q+ Bhi_1. 2/1/2007. In addition to the price series, a normalizedeseri
The same procedure as for the GARCH model is applied fr% e_llso_prowded as input t_o_the algorithm. The _norm_allzed
. series is constructed by dividing each observation with the
order to simulate data. 250-day moving average [15]. Each input pattern contaias th
Table | presents descriptive statistics for the real re: y g g ¥ putp

turn series, as well as, the GARCH(1,1) and ARMA(Z,l)—Currem price and the normalized price, while the algorithm

GARCHY(1,1) models. The-values are reported in paren-Can access past prices using the non-terminal npde !ag. The
: - maximum lag that the algorithm is allowed to consider is 250.
theses next to the estimate of each coefficient. F

GARCH(1.1) and ARMA(2,1)~GARCH(1,1) models the Yhe first 3014 patterns were assigned to the training set, the

: next 502 patterns are assigned to the validation set, while
values were calculated using the procedure of Bolleslev an) : : :
: NP . the last 1508 patterns comprised the test set. The inclusion
Wooldridge [17]. A clear implication of the results is that

both volatility clustering and the ARMA structure are prese of a validation set was used to alleviate the problem of

in the data set. The kurtosis reported in the first column querﬁttlng. The fltngss of an |n_d|V|duaI on the valldgthnl_se
was only used during the assignment of the best individual

Table | shows that the return series is highly leptokurtic. entified during the execution. For both GMA and GP, a

This phenomenon was first documented by Mandelbrot [1$ le was assigned as the best identified so far if it was at

in_commodity markets and it implies that the normalltyIeast as good as the current best on both the training and

assumption is violatéd Further, the standardized residualﬁhe validation set, and it improved on the performance on at
from the GARCH and ARMA-GARCH models also appear ' L
least one dataset (Pareto domination).

to exhibit more density around the mean and fatter tails . . ]
o For GP, the terminal seff, consisted of:
than normal. It follows that a better approximation of the

true DGP can be established by relaxing the normality T = {X}", X;,rand},
assumption. _
whereX;* stands for the normalized exchange rate at date
TABLE | X, is the non-normalized rate, aménd denotes a random
DESCRIPTIVESTATISTICS real constant in the interval [-1,1]. The function seX,
Model RW GARCH ARMA—-GARCH contained the following functions:
0 | 7.71e-05 (0.5859)  6.25e-05(0.6595)  8.79e-05 (0.5149) F e
b > - 10.96561 (0.0000) . T_ernary funqnons. if then else
b2 _ - -0.04164 (0.0820) e Binary functions: +, —, x, /, >, <, and, or,
61 - - ( ) 0.93178 (0-(0000) ) min, max, ma, lag,
w - 5.89e-07 (0.0295)  1.50e-06 (0.0054 P
o - 0.00996 (0.1020)  0.01584 (0.0765) * Unary functions: log, exp,
B - 0.97263 (0.0000)  0.94184 (0.0000) wherema andlag denote the moving average and the lag
Ke -0.3107 -0.3303 -0.3270 of the values of the time series
Se 4.5849 4.5561 4.7164 " . S .
JB. 212.1939 209.2158 246.7241 A positive evaluation of an individual over a pattern is
PJB 0 0 0 assumed to signal that the current holdings should be held

in the base currency (in this case US Dollars), and vice versa
In particular, if the system at date holds US Dollars and
%he evaluation of the individual over the correspondinguinp
n% . ” .
attern is positive then all the available funds are comeert
1The p-values corresponding to the Jarque Bera test statistigidually _to Yen On the antr"f‘ry' if the S_YStem holds Yen and the
zero in all cases, rejecting the null hypothesis of normalit individual evaluation is non-positive, then the amount is
p

Bootstrapping is a widely used methodology for testin
the statistical significance of the performance of tradi



converted to US Dollars. In all other cases, the holdings do
not change currency at date

TABLE Il
DE-GMA TEST SET PERFORMANCE

. . X min mean max std
The last observation of the series is always employed t0—numtrades: T 0.000000  5.120000  24.000000 7241152
convert the final holdings to the base currency. A one-way annualized ret;| -0.597215  0.360000  1.812633  0.562487
; ‘o Xeg: | -0.035841  -0.007994  0.000116  0.013372
transaction post equal to_ Oband 0.125%; for the trammg, R | 0038477 .0.008895  0.000000  0.014521
and test periods, respectively, was used. A larger traiosesct Sharpe Ratio:| -0.088653 0.076804  0.297369  0.139295

cost was imposed during training to penalize rules thattrad
very frequently. The fitness function returns thigy measure
with the parametety in Eq. (4) set toy = 0.11. o—
Regarding the parameters employed by the GP algorithm, .,
the maximum tree depth), at initialization was set to 5, 80
while in subsequent generatiobswas equal to 8. Population
size was 100 and the maximum number of generations was *
200. The reproduction, mutation, and crossover probadslit o
were0.05, 0.5, and0.45, respectively. Finally, the probability N
Of performlng unlform crossover at each node Of the common 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
region was 0.5. The stopping criterion for the algorithm was “°[~— — — — ~ ~
to reach the maximum number of generations. To optimize
the values of the constant nodes in all the GP individuals the
Hooke—Jeeves [20] procedure was applied. The GP outputs
was the best individual encountered during its execution.
Regarding the parameters employed by the DE algorlthm
the population size was equal to 200 and the maximum num- > o
ber of generation to 2000; the mutation and recombinatianyg. 3.
constants were set t8 = 0.1 andCR = 0.3, respectively.  Bottom:
Tables Il and Ill report the minimumagin), mean, maxi-
mum (max), and the standard deviation (std) for the number
of trades, the mean annualized retuX,g, and R.g, of
the GMA rules identified through DE over 50 experiments.
Figs. 3 and 4 illustrate the cumulated return of the besE
performing (on the test set) GMA rule on the training andw
test set, respectively. In each figure the evolution of theeti
series on the corresponding data set is also plotted. In 32
cases out of the fifty experiments the DE optimized GMA  °
rule was unable to identify a trading strategy that improved > ' ' ' ' '
over the simple strategy of holding the base currency over
the entire period. For these rules the variance of the returnm
series is zero and hence the computation of the mean and:
the standard deviation for the Sharpe ratio is performed°
without taking into consideration these cases. Excluding'®
these no trade strategies, the remaining MA rules performed1000
substantially more trades than the corresponding GP rulesg. 4. Top: Cumulated return of best performing rule on the
The best performing GMA rule was of the double MABottom: Evolution of time series on the test set.
form (i.e.6; > 0, 6> > 0;, andfd; = 0).
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Top: Cumulated return of best performing rule on the training se
Evolution of time series on the training set.
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test set.

Tables IV-V provide the same information for the GP TABLE IV
identified trading rules over 50 experiments, while the cu- GP TRADING RULE PERFORMANCE ON THE TRAINING SET
mulated return of the best performing rule on the test set is min mean max std
provided in Figs. 5 and 6. num trades:| 6.000000 14.100000 36.000000 7.163230
annualized ret:| 2.021642 1.000000 5.848466  1.009530
TABLE I X.g: | 0.013441  0.020439  0.030558  0.004680
Res: | 0.015576  0.023328  0.036446  0.005235
DE—-GMATRAINING SET PERFORMANCE Sharpe Ratio:| 0.590329  0.785202 0.963684  0.089573
min mean max std
num trades:| 0.000000  7.560000  38.000000  10.799017 _ _
annualized ret:] 0.000000  0.360000  3.284896  1.228251 Tables VI and VII present the results for the simulation
Xeg: | -0.032121  -0.006980  0.000000  0.010022  eyercise for the best GP and GMA rules, respectively. For
Reg: | -0.042298  -0.010640  0.000000  0.014626 h of the f luati h table firstl
Sharpe Ratio:| 0.071835 0.288762  0.388624  0.080077 €ach of the four evaluation measures each table firstly tepor

the realized values for the corresponding rule (Realized).



TABLE V

% j j j j j Cdmu\ated Rell.‘trn
GPTRADING RULE PERFORMANCE ON THE TEST SET 1
Test Set: min mean max std 1
trades: | 0.00000 8.933333  32.000000 6.144769 1
annualized ret:| -1.633383 0.950000 2.669512 1.075628 g
Xeg: | -0.037450 -0.018569  0.013903  0.011517 |
Reg: | -0.048849  -0.021780  0.015108  0.013432 |

Sharpe Ratio:| -0.451822 -0.118973 0.513813 0.242092 5
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1 The fact that the-value of the Bootstrap ARMA-GARCH
DGP is the higher for the GP rule suggests that part of
the models predictability can be attributed to the ARMA-
GARCH structure of the underlying series. Finally, it is
noted that the normality assumption results in rejecting th
null hypothesis much more frequently than the bootstrap,

especially for the GP rule.
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Fig. 5. Top: Cumulated return of best GP rule on the training Bettom:
Evolution of time series on the training set.

TABLE VI
BESTGPRULE PERFORMANCE

The variousp-values corresponding to the different null
models for both the bootstrap and the simulation based on

the normality assumption are reported in the subsequemt Annual Return| Xog | FHe St
rows of the tables. These values are calculated using 10( Ogggiz‘::p 2.6695 1.3903] 1.5108] 05138
simulations from each DGP and are defined as the percent-, rw 0.04 0.026 | 0.026 | 0.046
age of times that a rule yielded a higher value for each p GARCH 0.031 0.028 | 0.022 | 0.039
performance measure on the artificial series than on th f\’loArm'ﬁ‘GARCH 0.045 0035 | 0.036 | 0.037
real series. Overall, the performance of the GP rule on the 7w 0.032 0.075 | 0.023 | 0.036
actual test set exceeds that of the optimized GMA rule with] p GARCH 0.026 0.02 | 0.017 | 0.03
respect to all measures. For the GP rule, all measures are? ARMA-GARCH 0.035 0.027 | 0.024 | 0.034
positive indicating that annualized returns after tratieas
costs cover the cost of risk taken by the model. It is also
interesting to note thaX ¢ is smaller thanR.¢ showing that TABLE VI
penalizing the clustering of profits equally with the clustg BESTGMA RULE PERFORMANCE
of losses has caused an overestimation of risk for this rule. Annual Return | Xg Rogy St
The GMA rule also generates positive annualized returns Sgg‘l{sztfg 1.8126 0.0116 | -0.1188 | 0.2974
after transactions costs. Howevéf,q is very close to zero > RW P 0124 0074 T 007 0112
and R IS negative, suggesting that there is a significanf p GARCH 0.117 0.079 | 0.061 | 0.106
clustering of losses (see Fig 4). L Qﬁ“ﬁ‘GARCH 0.13 0.075 | 0.069 | 0.107
The results indicate that the performance of the GP rule, /w 0.099 0.058 T 0.052 | 0.087
is also superior in terms of statistical significance. The p GARCH 0.100 0.061 | 0.056 | 0.087
null hypothesis that the examined DGPs can explain the? ARMA-GARCH 0.124 0081 | 0067 | 0.098

performance of the GP rule is rejected at the five percent
significance level for all measures. On the contrary the same

null hypothesis for the GMA rule is not rejected for any
measure. The examination of thevalues of the various

VIII. CONCLUSIONS

Technical analysis has a long history in financial mar-

performance measures reveals that they are higher for tkets and its application in the foreign exchange market
Sharpe Ratio,S7, and the annualized return for all DGPsis gaining ground according to the evidence accumulated
for both models. As indicated in [6] an explanation for thisover the past years. Along with conventional trading rules
finding is that these two measures use limited informatiotihere is a growing interest in the development of automated



methods to detect novel patterns in the data. In this paperr]
we considered Genetic Programming to address this task
and compared its performance to traditional moving average
rules. The parameters of the latter were optimized througis]
the Differential Evolution algorithm.
Both algorithms were capable of generating highly prof-[g]
itable rules in the portion of the data used for training.
On the test set, the moving average rules proved to

more robust compared to the Genetic Programming rul

However, Genetic Programming managed to create the most
profitable rule encountered. Moreover, a statistical etan
of the properties of the best moving average rule showé(ljl]
that the null hypothesis that its performance is attriblgtad
well-known properties of the data—generating processatann
be rejected. The opposite held for the GP identified rule.
Another interesting feature of these rules was their ghidit
take accurate positions long into the future.
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