
Musical Composer Identification through Probabilistic
and Feedforward Neural Networks

Maximos A. Kaliakatsos-Papakostas, Michael G. Epitropakis, and Michael N. Vrahatis

Computational Intelligence Laboratory (CI Lab), Department of Mathematics,
University of Patras Artificial Intelligence Research Center (UPAIRC), University of Patras,

GR-26110 Patras, Greece
{maxk,mikeagn,vrahatis}@math.upatras.gr

Abstract. During the last decade many efforts for music information retrieval
have been made utilizing Computational Intelligence methods. Here, we exam-
ine the information capacity of the Dodecaphonic Trace Vector for composer
classification and identification. To this end, we utilize Probabilistic Neural Net-
works for the construction of a “similarity matrix” of different composers and
analyze the Dodecaphonic Trace Vector’s ability to identify a composer through
trained Feedforward Neural Networks. The training procedure is based on clas-
sical gradient-based methods as well as on the Differential Evolution algorithm.
An experimental analysis on the pieces of seven classical composers is presented
to gain insight about the most important strengths and weaknesses of the afore-
mentioned approach.

1 Introduction

The common approach to tackle the composer identification and classification problem
is through music theory and involves symbolic or score element analysis, which is done
by musicians or musicologists, such as musical motif recognition, note durations and
musical interval analysis. The main domain in computer music data extraction is based
on statistical refinement through the wave forms of musical pieces [1]. In the literature,
significant results have been demonstrated for musical genre recognition [2,3], key sig-
nature [4,5], chord identification [5,6] and composer identification [7] among others.
A vital question would be: which symbolic features of a musical score embody the
required information for computer based composer identification?

Data extraction through score analysis has been proven to be useful for chordal
analysis [8], epoch classification of musical pieces [9] as well as composer identifi-
cation [1,10,11] among others.

In the paper at hand, we study the information capacity of a simple and compact
score-based data extraction technique, the Dodecaphonic Trace Vector (DTV), for the
Musical Composer Identification task (MCI). The DTV roughly represents densities
of degrees in a diatonic major scale in a musical piece and is analogous to the Pitch
Chroma Profile proposed in [6]. To this end, based on the DTV we examine the com-
poser identification task, by firstly discovering similarities between composers through
supervised classifiers, namely the Probabilistic Neural Networks, and secondly inves-
tigating the DTV representation identification capabilities through Feedforward Neural
Networks.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 411–420, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

412 M.A. Kaliakatsos-Papakostas, M.G. Epitropakis, and M.N. Vrahatis

The rest of the paper is organized as follows. In Section 2, the dataset acquisition
and the tools that have been applied to extract certain symbolic features of a score
are described. In Section 3, we briefly demonstrate the probabilistic and feedforward
neural networks, while Section 4 is devoted to the presentation of the methodology and
the produced experimental results. The paper ends with concluding remarks and some
pointers for future work.

2 Data Set and Data Extraction

This section is devoted to describe the methods and techniques utilized for data acqui-
sition and refinement to capture the desired information from musical pieces.

To this end, we have collected a dataset consisting of 350 musical pieces, composed
by seven classical music composers. Specifically, musical pieces of the composers
Bach, Beethoven, Brahms, Chopin, Handel, Haydn and Mozart, have been collected in
MIDI format from [12]. Fifty musical works have been collected from each composer.
To comply with constrains regarding composition styles for different musical instru-
ments, an effort has been made so that most of the works collected by each composer
were already transcribed for piano and correspond to an almost uniform collection of
musical forms. Furthermore, in order to formulate a scale-tolerant collection, an almost
equal number of major scale and minor scale pieces have been included.

To process each work, a conversion to a more understandable file format had to be
made. Hence, we have incorporated the MSQ tool to transform the MIDI file format to a
simple text file format [13]. MSQ converts each note to a text symbol preserving infor-
mation about duration, time onset, pitch and velocity. Through the above encoding each
Pitch Height can be described using an integer, but the information on the identity of
unison notes is not maintained, which has been named enharmonic equivalence [5,14],
e.g. whether a number corresponds to C� or D�.

Here, we investigate whether a compact information index such as the Dodecaphonic
Trace Vector, which is briefly described in the following paragraph, may incorporate
sufficient information from a musical piece, to tackle the MCI task.

Dodecaphonic Trace Vector. A musical piece is like a journey, it begins and ends
following a certain path. This path could be based on notes of either a certain scale
(tonal music), or more than one scales, depending on the form of each piece and its
composer’s personal style. A collection of traces of this path can be created with the
Dodecaphonic Trace Vector described below.

We consider a 12-dimensional vector, the Chroma Profile [15] vector of a musical
piece denoted by CP = (CP (1),CP (2), . . . ,CP (12)), the elements of which can be
defined by the following equation:

CP
(
n mod (12) + 1

)
=

∑
n mod (12)∈M

1,

where n denotes a note in the musical piece M . This equation simply states that the first
element, CP (1), is the summation of all the notes n that satisfy the equation n mod
(12) ≡ 0, which has been characterized as octave equivalence [14]. In our example

MCI through Probabilistic and Feedforward Neural Networks 413

CP (1) is the summation of all Cs, while CP (2) is the summation of all C� or D� in
any octave.

The norm of the CP vector of a musical piece depends on its length. A very short
piece is expected to have less notes than a very long one, under similar circumstances,
i.e. both being in the same tempo and composed by the same composer. To extract useful
data concerning the composer out of the CP vector, regardless the length of the piece,
a normalization has to be done. The normalized vector N = (N (1),N (2), . . . ,N (12))
can be defined by the following equation:

N (i) =
CP (i)

max
1�j�12

CP (j)
, for i ∈ {1, 2, . . . , 12}.

Finally, to follow the traces of the melodies and the harmony (chord changes) of a
composer, the utilized methods should be key tolerant, in a sense that the key of the
composed piece is not essential. What is considered to be important information, is the
way that a composer manipulates the degrees of the major or minor scale in his/hers
compositions and the deriving expansions occurring on scale changes through out the
piece. A procedure to capture that information of a collection of musical pieces is, first,
to transpose all these pieces in the key of C major and then to calculate their normalized
N vector. Additionally, the minor scale pieces were transposed in the key of A minor.
Thus, the Dodecaphonic Trace Vector is defined by the normalized vectors of musical
pieces transposed to the key of C major or A minor.

3 Classification Methods Tested

Our methodology is based on two simple steps and provides insights on the uniqueness
of the DTV in the compositions of each composer. Firstly, a classification is initiated
for the construction of a similarity matrix between the composers using a Probabilistic
Neural Network and secondly, a Feedforward Neural Network is utilized to identity
each composer from another. It has to be noted that the experimental results should be
discussed with musical experts to further verify the uniqueness of the DTV for each
composer.

For completeness purposes let us briefly describe the classification methods used for
the composer identification task.

Probabilistic Neural Networks. Probabilistic Neural Networks (PNNs) introduced by
Sprecht in 1990 [16] as a new neural network structure. PNNs are utilized to classify
objects in a predetermined number of classes. PNNs are based on kernel discriminant
analysis and incorporate the Bayes decision rule and a non-parametric density func-
tion [17]. A PNN’s structure consists of four layers, the input, the pattern, the summa-
tion and the output layer [16,18]. To this end, a pattern vector, x ∈ R

p is applied to
the p input neurons and propagates to the pattern layer. The pattern layer is fully in-
terconnected with the input layer, organized in K groups, where K is the number of
classes present in the data set. Each group of neurons in the pattern layer consists of
Nk neurons, where Nk is the number of training vectors that belongs to class k where

414 M.A. Kaliakatsos-Papakostas, M.G. Epitropakis, and M.N. Vrahatis

k = 1, 2, . . . , K . Hence, the i-th neuron in the k-th group of the pattern layer calculates
its output utilizing a Gaussian kernel function defined by the following equation:

fik(X) =
1

(2π)p/2|Σk|1/2
exp

(
−1

2
(X − Xik)�Σ−1

k (X − Xik)
)

,

where Xik ∈ R
p defines the center of the kernel and Σk is the matrix of smoothing

parameters of the kernel function. Furthermore, the summation layer consists of K
neurons and estimates the conditional probabilities of each class by,

Gk(X) =
Nk∑
i=1

πkfik(X), k ∈ {1, 2, . . . , K},

where πk is the prior probability of each class k (
∑K

k=1 πk = 1). Thus, a new pat-
tern vector X , not included in the training set, is classified to the class which produces
the maximum output of its summation neurons. It has to be noted here that PNN’s
classification ability is strongly affected by the value of the smoothing parameter, σ,
that, roughly speaking, determines the range of each class and consequently its perfor-
mance [16,19]. Probabilistic Neural Networks have been recently utilized in musical
applications [3].

Feedforward Neural Networks. Although, many different models of Artificial Neural
Network have been proposed, the Feedforward Neural Networks (FNNs) are the most
common and widely used. FNNs have been successfully utilized to tackle difficult real-
world problems [20,21,22,23]. For completeness purposes let us briefly describe their
structure and their supervised training methodology.

A Feedforward Neural Network consists of simple processing units called neurons,
which are arranged in layers, the input, the hidden layers and the output layer. The
neurons between successive layers are fully interconnected, and each interconnection
corresponds to a weight. The training process is an incremental adaptation of the con-
nection weights which acquires the knowledge of the problem at hand and stores it to
the network’s weights. More specifically, consider a FNN, net, whose l-th layer con-
tains Nl neurons, where l = 1, 2, . . . , M . When a pattern appears in its input layer
the signal deriving by the multiplication of the input and the weights of the first layer
neurons is summed and passed through a nonlinear activation function such as the well
known logistic function f(x) = (1 + e−x)−1. Those signals are then propagated to
the next layer of neurons, l, multiplied by the weights of the next neuron layer, and the
procedure continues until the signal reaches the output layer. Hence, the j-th layer, can
be described by netlj =

∑Nl−1
i=1 wl−1,l

ij yl−1
i , where wl−1,l

ij is the weight from the i-th
neuron at the (l − 1) layer to the j-th neuron of the l-th layer, while yl

j = f(netlj) is
the activation function of the j-th neuron in the l-th layer. The training procedure can
be accomplished by minimizing the error function E(w) which can be defined by the
sum of the squared differences between the actual output of the FNN, denoted by yM

j,p,
and the desired output, denoted by dj,p, relative to the appeared input,

E(w) =
1
2

P∑
p=1

NM∑
j=1

(
yM

j,p − dj,p

)2
=

P∑
p=1

Ep(w),

MCI through Probabilistic and Feedforward Neural Networks 415

where w ∈ R
n is the vector of the network weights and P represents the number of

patterns used in the training data set.
Traditional methods for minimizing the above error function require the estimation

of the partial derivatives of the error function with respect to each weight. These are
called gradient-based descent methods and information concerning the gradient are es-
timated by back propagating the error from the output to the first layer neurons using
the delta rule, a procedure thoroughly described in [20,24]. Furthermore, novel meth-
ods proposing stochastic evolution of the weight vector do not require the computation
of the gradient of the error function [21,22,25]. These methods are beneficial against
gradient-based methods not only in terms of computational cost but also their global
optimization characteristics enhance the training procedure which is less likely to be
trapped in local minima [21,22,23].

Here we incorporate, both classical and stochastic training methodologies to en-
hance the training procedure. Hence, we have used three well–known and widely used
classical methods, namely the Levenberg-Marquardt (LM) [26,27], the Resilient Back-
propagation (Rprop) [28], and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [29],
as well as, we have used an evolutionary approach, namely the Differential Evolution
method [25]. Due to space limitations, we are not in a position to briefly describe here
the above methods. The interested reader is referred to [25,26,27,28,29].

4 Methodology and Experimental Results

This section demonstrates the experimental results and the experimental procedure uti-
lized to tackle the Musical Composer Identification task. Hence, based on the DTV, the
first step of our methodology is to calculate the similarity of the composers through
the utilization of Probabilistic Neural Networks. To this end, we construct a similarity
matrix for all musical composers. The construction of the similarity matrix is based on
a simple method. To the best of our knowledge, this method is utilized for the first time
and it is described below.

The set of the seven composers that we have collected, allows the construction of a
square matrix with seven rows and seven columns. Each row and column represents one
composer. Each entry of the matrix would be wished to produce an indication about the
similarity between the composers corresponding to the respective row and column in
dependence to the similarity along the rest of the composers. It has to be noted here that
the diagonal elements of the aforementioned matrix, represents the similarity between
a composer with himself, and would have no entry to be computed. A final and notable
comment is that a consistent similarity matrix of this form should be symmetric.

We will demonstrate the PNNs role in the similarity matrix through a simple test
case example. Let us consider that we want to construct the entries of the first column,
which are related to Bach1. We utilize a PNN with six classes, one for each composer
except Bach, and we train it by incorporating all pieces from the six composers, i.e.
fifty pieces at the current data set. Afterwards, the fifty pieces of Bach are given to the
PNN for classification. Thus, the utilized network will classify them to the classes of

1 Since the first column is related to Bach, then the first row is related also to Bach.

416 M.A. Kaliakatsos-Papakostas, M.G. Epitropakis, and M.N. Vrahatis

the other six composers. In this way it can be assumed that the more pieces classified to
a composer’s class, the more similar his composition style is related to Bach’s.

The construction of the first column of the similarity matrix is completed if we assign
no value to the first row (representing the similarity between Bach and himself) and
normalize the classified cases to probabilities per column by dividing every element of
the first column by the total of the pieces classified (50). We observe that the sum of the
column elements is one. To this end, Table 1 exhibits the similarity matrix obtained by
the described procedure. The PNNs have been implemented in MATLAB c© platform
with σ = 0.1.

Table 1. Musical Composers Similarity Matrix through Probabilistic Neural Networks

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 0.08 0.14 0.08 0.36 0.08 0.06
Beethoven 0.12 — 0.26 0.22 0.02 0.20 0.34
Brahms 0.16 0.10 — 0.30 0.06 0.08 0.08
Chopin 0.00 0.18 0.36 — 0.04 0.12 0.08
Handel 0.30 0.00 0.04 0.08 — 0.18 0.26
Haydn 0.26 0.22 0.08 0.26 0.22 — 0.18
Mozart 0.16 0.42 0.12 0.06 0.30 0.34 —

One can observe that the sum of the entries of each row is not one as well as the
matrix is not symmetric. For example, it can been seen that 26% of the pieces composed
by Bach were more similar to the composing traces of Haydn, while only 8% of Haydn’s
pieces fitted best Bach’s composing traces. The asymmetric property of the Table 1 is
discussed in the final section.

Other notable results have also been given through another classification task. For
each composer we have constructed two sets, (a) the set of training pieces and (b) the
set of test pieces. The former set consists of 35 and the latter of 15 pieces out of the 50 of
each composer. We have used the 35 training pieces of all seven composers to create a
PNN with seven classes. The remaining 15 pieces of a composer have been presented to
the PNN and the percentage of the pieces classified to each of the seven composer, has
been recorded in the composer’s related column. The results shown in Table 2 are the
average results of 100 classification tasks as described, each task has been accomplished
with different, randomly selected, training and test sets. For example, in the first column
we can see the percentage of the pieces of Bach classified to each composer, including
Bach.

It should be commented here that the fact that the diagonal elements are greater than
any other element in the respective row or column (with an exception made to the sixth
diagonal element), provides evidence for the compositional information capacity of the
Dodecaphonic Trace Vector. Furthermore, it has to be noted that the uniformly selected
musical forms of the pieces of each composer is reflected by the high values of some
non-diagonal elements compared to their corresponding diagonal element values.

FNN Identification Success Table. Each element of the Identification Success Ta-
ble (IST) (Tables 3–6) shows the mean value of the successful composer identification

MCI through Probabilistic and Feedforward Neural Networks 417

Table 2. PNN Verification Table

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach 64.6% 6.1% 4.5% 6.6% 14.3% 6.4% 5.5%
Beethoven 3.4% 33.3% 13.9% 11.1% 0.5% 13.6% 10.1%
Brahms 1.4% 4.7% 39.1% 15.0% 0.7% 5.0% 3.5%
Chopin 0.2% 12.4% 20.2% 53.0% 2.0% 5.6% 2.0%
Handel 13.4% 0.5% 4.7% 1.7% 66.1% 18.8% 10.6%
Haydn 6.1% 12.4% 6.5% 8.8% 6.6% 24.3% 11.6%
Mozart 10.9% 30.6% 11.1% 3.8% 9.8% 26.3% 56.7%

efforts of a FNN to distinguish whether a piece belongs to the composer of the respec-
tive row or column.

These are the mean values computed over 50 different training-testing identification
tasks for each pair of composers. During each of the 50 identification tasks between two
composers, of row A and column B, the network has been trained to respond 1 to the
35 training pattern of pieces composed by A and 0 to the 35 training pattern of pieces
composed by B.

To test the network’s performance we have used the 15 remaining pieces of A, for
which we know the network should respond a value near 1 (desired output), and the 15
remaining pieces of B, for which the network should respond a value near 0 (desired
output). When an unknown piece (a piece that does not belong to the training set) has
been presented to the network, the network’s response, x, has been considered as 1, if
x > 0.5 and 0 in any other case.

The success rate of an identification task has been estimated as the percentage of the
desired network outputs over all 30 test pieces, which is the sum of the right network
responses divided by 30. For each one of the 50 identification tasks a different set of 35
training pieces for each composer has been used, which it also holds for the 15 pieces
of each composer that have been used for testing. Moreover, a 5-fold cross-validation
methodology has also been conducted with similar results.

The presented values on the IST correspond to the mean success value of the 50 iden-
tification tasks for each composer pair. A final comment about the training procedure
would be that the sequence of the presented training patterns was randomized so that
their targets would not include more than four continuously presented patterns targeted
with 1.

Experimental results for the trained FNNs. In Tables 3–6, we exhibit the IST for
FNNs that have been trained using the LM, Rprop and BFGS methods, respectively,
as well as, with the Differential Evolution algorithm [25]. These results have been pro-
duced by the FNNs of the Neural Networks Toolbox of MATLAB [31] using the de-
fault toolbox parameters. Additionally, for the Differential Evolution algorithm we have
utilized a population of twenty potential solutions and have evolved them for 500 gen-
erations with the DE/best/1/bin strategy by incorporating the default parameters for its
control parameters i.e. F = 0.5, and CR = 0.9 [25].

418 M.A. Kaliakatsos-Papakostas, M.G. Epitropakis, and M.N. Vrahatis

Table 3. Identification Success Table for FNN trained with the LM method

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 81.20% 76.40% 87.00% 67.13% 69.33% 82.20%
Beethoven 83.13% — 66.46% 63.86% 84.06% 65.00% 69.80%
Brahms 75.80% 66.40% — 54.06% 84.13% 76.20% 78.00%
Chopin 85.46% 64.86% 55.33% — 85.73% 77.86% 77.00%
Handel 69.80% 84.53% 84.93% 85.33% — 70.86% 78.06%
Haydn 71.40% 62.33% 76.73% 74.80% 69.13% — 55.80%
Mozart 82.33% 71.06% 80.00% 79.06% 80.06% 53.60% —

Table 4. Identification Success Table for FNN trained with the Rprop method

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 82.86% 78.20% 85.00% 68.46% 72.06% 83.20%
Beethoven 83.13% — 70.00% 65.20% 85.40% 65.60% 71.06%
Brahms 79.86% 66.60% — 52.73% 85.46% 79.26% 80.60%
Chopin 87.06% 65.00% 54.93% — 87.40% 76.80% 78.66%
Handel 69.13% 86.60% 86.06% 88.73% — 71.60% 78.40%
Haydn 72.20% 65.67% 77.67% 76.33% 72.20% — 55.06%
Mozart 83.53% 73.00% 80.06% 77.86% 80.60% 53.93% —

Table 5. Identification Success Table for FNN trained with the BFGS method

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 83.46% 79.26% 87.33% 67.60% 72.46% 82.73%
Beethoven 84.00% — 66.20% 66.06% 86.86% 64.26% 72.40%
Brahms 77.46% 68.33% — 53.66% 85.13% 78.86% 77.33%
Chopin 86.40% 66.53% 55.13% — 88.53% 74.93% 79.26%
Handel 65.33% 85.60% 85.86% 88.86% — 70.53% 79.53%
Haydn 70.13% 63.66% 78.80% 75.33% 67.13% — 53.86%
Mozart 81.53% 72.46% 79.06% 78.53% 78.33% 54.60% —

Table 6. Identification Success Table for FNN trained with DE/best/1/bin

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 82.20% 75.13% 83.53% 69.00% 71.80% 81.80%
Beethoven 80.80% — 62.60% 66.20% 80.86% 66.40% 69.80%
Brahms 75.86% 68.33% — 50.06% 82.53% 79.40% 77.00%
Chopin 83.80% 64.66% 47.46% — 84.53% 76.86% 78.73%
Handel 69.66% 86.46% 79.60% 86.40% — 70.53% 80.93%
Haydn 72.80% 66.66% 77.93% 75.73% 72.00% — 51.40%
Mozart 82.60% 71.80% 78.00% 75.26% 79.53% 52.26% —

MCI through Probabilistic and Feedforward Neural Networks 419

5 Discussion and Concluding Remarks

Through this work, evidence has been provided that the Dodecaphonic Trace Vector
and, consequently, the Chroma Profile vector contain considerable capacity of infor-
mation for the individuality of a composer. Moreover, experts with sufficient musical
background need to amplify the findings of the work at hand and aid the musical anal-
ysis by educing related information.

The PNN similarity matrix in Table 1, as well as the IST table of the FNNs imply
that as long as the similarity between two composers increases, the identification ef-
fectiveness between those two decreases. The latter comment is a sensible assumption,
though we can see some exceptions, for example in Table 1 we can see that the sim-
ilarity between Mozart and Handel is greater than the similarity between Mozart and
Haydn, though in Table 3 the identification task is more precise for the first couple.

Future work would incorporate further analysis of the lack of symmetry of Table 1
and inquiry on the perspective for information extraction out of it. These pieces of
information, combined with historical facts, could lead to an influence diagram between
the composers that provides or validates the evidence on the existence of composers of
fundamental influence.

More accurate results could be reached by refining further the musical structure
through the symbolic analysis of musical scores using more sophisticated representa-
tion of musical items, or by incorporating pitch transitions and pitch durations. It is also
intended to compare the DTV efficiency against other approaches. Moreover, instead of
the PNN used here, any other supervised clustering tool, such as Support Vector Ma-
chines [32], could be used for the construction of the similarity matrix. The same holds
for the identification success table. Finally, it is evident that a widely acceptable musi-
cal database should be created, in order to analyze and compare musical data extraction
approaches.

References

1. Lebar, J., Chang, G., Yu, D.: Classifying musical score by composer: A machine learning
approach, http://www.stanford.edu/class/cs229/projects2008.html

2. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Transactions on
Speech and Audio Processing 10(5), 293–302 (2002)

3. Mostafa, M.M., Billor, N.: Recognition of western style musical genres using machine learn-
ing techniques. Expert Systems with Applications 36(8), 11378–11389 (2009)

4. Peeters, G.: Musical key estimation of audio signal based on hidden markov modeling of
chroma vectors. In: Proc. of the Int. Conf. on Digital Audio Effects DAFx 2006, pp. 127–
131 (2006)

5. Gomez, E.: Tonal description of polyphonic audio for music content processing. INFORMS
Journal on Computing 18(3), 294–304 (2006)

6. Fujishima, T.: Realtime chord recognition of musical sound: A system using common lisp
music. In: Proc. ICMC, pp. 464–467 (1999)

7. Meador, S., Uhlig, K.: Content-based features in the composer identification problem,
http://www.stanford.edu/class/cs229/projects2008.html

8. Pardo, B., Birmingham, W.P.: Algorithms for chordal analysis. Computer Music Jour-
nal 26(2), 27–49 (2002)

http://www.stanford.edu/class/cs229/projects2008.html
http://www.stanford.edu/class/cs229/projects2008.html

420 M.A. Kaliakatsos-Papakostas, M.G. Epitropakis, and M.N. Vrahatis

9. Beran, J.: Statistics in Musicology, 1st edn., July 2003. Chapman & Hall/CRC (2003)
10. Pollastri, G.S.E.: Classification of melodies by composer with hidden markov models

(November 2001),
http://www.computer.org/portal/web/csdl/doi/10.1109/
WDM.2001.990162

11. Liu, Y.W.: Modeling music as markov chains: Composer identification,
https://www-ccrma.stanford.edu/˜jacobliu/254report.pdf

12. MIDI: The classical MIDI connection site map,
http://www.classicalmidiconnection.com

13. Koepf, S., Haerpfer, B.: The MSQ project,
http://www.aconnect.de/friends/msq2/msq.htm

14. Schell, D.: Optimality in musical melodies and harmonic progressions: The travelling musi-
cian. European Journal of Operational Research 140(2), 354–372 (2002)

15. Homei, M., Kazushi, N.: Extraction and analysis of Chroma-Profile from MIDI data. Joho
Shori Gakkai Kenkyu Hokoku 2003(82(MUS-51)), 97–101 (2003)

16. Specht, D.F.: Probabilistic neural networks. Neural Networks 3(1), 109–118 (1990)
17. Hand, D.: Kernel Discriminant Analysis. John Wiley & Sons Ltd., Chichester (1982)
18. Georgiou, V.L., Pavlidis, N.G., Parsopoulos, K.E., Alevizos, P.D., Vrahatis, M.N.: New self-

adaptive probabilistic neural networks in bioinformatic and medical tasks. International Jour-
nal on Artificial Intelligence Tools 15(3), 371–396 (2006)

19. Georgiou, V.L., Alevizos, P.D., Vrahatis, M.N.: Novel approaches to probabilistic neural net-
works through bagging and evolutionary estimating of prior probabilities. Neural Processing
Letters 27(2), 153–162 (2008)

20. Haykin, S.S.: Neural networks and learning machines. Prentice Hall, Englewood Cliffs
(2008)

21. Plagianakos, V.P., Vrahatis, M.N.: Parallel evolutionary training algorithms for ‘hardware–
friendly’ neural networks. Natural Computing 1, 307–322 (2002)

22. Magoulas, G.D., Plagianakos, V.P., Vrahatis, M.N.: Neural network-based colonoscopic di-
agnosis using on-line learning and differential evolution. Applied Soft Computing 4, 369–
379 (2004)

23. Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Evolutionary training of hardware real-
izable multilayer perceptrons. Neural Computing and Application 15, 33–40 (2005)

24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In: Parallel distributed processing: explorations in the microstructure of cogni-
tion, foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

25. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to
Global Optimization. Natural Computing Series. Springer, New York (2005)

26. Marquardt, D.W.: An algorithm for Least-Squares estimation of nonlinear parameters. SIAM
Journal on Applied Mathematics 11(2), 431–441 (1963)

27. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm.
IEEE Transactions on Neural Networks 5(6), 989–993 (1994)

28. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The
Rprop algorithm. In: Proc. of the IEEE Intl. Conf. on Neural Networks, San Francisco, CA,
pp. 586–591 (1993)

29. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (1999)
30. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London

(1982)
31. Demuth, H., Beale, M.: Neural Network Toolbox 6: For use with MATLAB: User’s Guide.

In: The Mathworks, Cochituate Place, 24 Prime Park Way, Natick, MA, USA (1992-2009)
32. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining

and Knowledge Discovery 2(2), 121–167 (1998)

http://www.computer.org/portal/web/csdl/doi/10.1109/WDM.2001.990162
http://www.computer.org/portal/web/csdl/doi/10.1109/WDM.2001.990162
https://www-ccrma.stanford.edu/~jacobliu/254report.pdf
http://www.classicalmidiconnection.com
http://www.aconnect.de/friends/msq2/msq.htm

	Musical Composer Identification through Probabilistic and Feedforward Neural Networks
	Introduction
	Data Set and Data Extraction
	Classification Methods Tested
	Methodology and Experimental Results
	Discussion and Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

