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Abstract—Highly multimodal landscapes with multiple lo-
cal/global optima represent common characteristics in real-world
applications. Many niching algorithms have been proposed in the
literature which aim to search such landscapes in an attempt to
locate as many global optima as possible. However, to locate and
maintain a large number of global solutions, these algorithms are
substantially influenced by their parameter values, such as a large
population size. Here, we propose a new niching Differential Evo-
lution algorithm that attempts to overcome the population size
influence and produce good performance almost independently of
its population size. To this end, we incorporate two mechanisms
into the algorithm: a control parameter adaptation technique
and an external dynamic archive along with a reinitialization
mechanism. The first mechanism is designed to efficiently adapt
the control parameters of the algorithm, whilst the second one is
responsible for enabling the algorithm to investigate unexplored
regions of the search space and simultaneously keep the best
solutions found by the algorithm. The proposed approach is
compared with two Differential Evolution variants on a recently
proposed benchmark suite. Empirical results indicate that the
proposed niching algorithm is competitive and very promising. It
exhibits a robust and stable behavior, whilst the incorporation of
the dynamic archive seems to tackle the population size influence
effectively. Moreover, it alleviates the problem of having to fine-
tune the population size parameter in a niching algorithm.

I. INTRODUCTION

Several algorithms/methodologies have been proposed in
the literature of Evolutionary Computation (EC) that attempt
to optimize problems with complex and highly multimodal
landscapes. Some of them are capable of finding numerous
global or/and local optima and, in several cases, the goal is
to accurately detect as many as possible. As such, various
Evolutionary Computation algorithms have been extended to
address multimodal problems, namely the “niching” algo-
rithms [1], [2]. Niching algorithms usually impose a restrictive
reproduction technique in order to maintain the diversity of
their populations and converge in parallel to multiple solutions.
Over the last 20 years or so, various niching techniques have
been proposed in the EC literature. Characteristic examples
include: fitness sharing [2], [3], crowding [1], [2], fitness
sharing [2], [3], clustering [4], clearing [5], speciation [6],
restricted tournament selection [7], stretching and deflation [8],
parallel approaches [9], and specialized operators [10], [11].

In the current work, given a multimodal function the ob-
jective is to locate as many global optima as possible. A
successful niching algorithm should accomplish two major

objectives: It should accurately locate and maintain good
solutions (local or global optima). To accomplish these two
objectives, existing algorithms incorporate various niching
techniques to induce the required niching effect. Most of them
introduce new parameters that have to be carefully fine-tuned,
such as the niche or species radius [12]–[14], and the crowding
factor [15]. This is because a careless selection of their values
may result in poor performance. In addition, one common
parameter that plays a crucial role in the performance of
a niching algorithm is its population size. In an unknown
multimodal problem, where prior knowledge about the number
of global optima or their characteristics is not available, a user
has to fine tune those parameters. In the case of the population
size, the user should either select a very large population size
or carefully fine-tune it, which might not always be an effective
approach especially for problems with very expensive function
evaluations.

In this study, we aim to effectively tackle the aforemen-
tioned dependence on the manual selection of the population
size value and we are attempting to design an algorithm that
is not influenced by the size of its population. As such, we
are going to employ a recently proposed Niching Differential
Evolution algorithm [10], namely the DE/nrand/1 algorithm,
which has the advantage of being able to reliably locate many
global optima, without introducing an extra niching parameter.
Taking DE/nrand/1 as a baseline model, we propose a pa-
rameter independent algorithm by incorporating two additional
mechanisms into its structure: a well known control parameter
adaptation technique [16] and an external dynamic archive
along with a reinitialization mechanism [17]. The adaptive
control parameter technique will alleviate the problem of
having to fine-tune the standard control parameters required
by Differential Evolution, i.e. the mutation and recombination
factor [18]–[20]. On the other hand, the dynamic archive along
with the reinitialization mechanism will be responsible for
keeping the best potential solutions found by the algorithm and
it will simultaneously re-initialize some individuals to allow
the algorithm to search unexplored regions of the problem
space. As a result, the algorithm is able to continue its search
for additional good global solutions, without being bound
by an initial small population size, resulting in a niching
algorithm with its performance being almost independent from
the population size parameter, i.e. small populations should be

2013 IEEE Congress on Evolutionary Computation 
  June 20-23, Cancún, México 

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 79



sufficient to tackle complex multimodal problems.
The remainder of the paper is organized as follows: The

motivation behind the development of the proposed algorithm,
as well as some related work, is briefly described in Section II,
whilst its main characteristics and implementation details are
presented and discussed in Section III. In Section IV, we
evaluate the proposed algorithm and discuss its outcomes
based on extensive experimental results. The paper ends in
Section V with a brief discussion of the contribution of this
work.

II. RELATED WORK

In the EC literature, there are several Differential Evolu-
tion (DE) variants that utilize some niching technique in an
attempt to tackle multimodal problems with a high number
of global and/or local optima. Thomsen adopted the classical
deterministic crowding and the fitness sharing technique, and
produced two well known algorithms, the Crowding DE (CDE)
and the Sharing DE [15]. Their performance was evaluated
on several multimodal problems, where the Crowding DE
outperformed the Sharing DE in the majority of the considered
problems [15]. The selection pressure, imposed in CDE, is
determined by the crowding factor which is the key parameter
for its performance. In turn, Li in [12] employed the concept
of speciation to DE’s structure, resulting in the widely used
Species-based DE (SDE) [12], [13]. In principle, SDE locates
simultaneously multiple global optima by adaptively splitting
its population into multiple species and evolving them through
the DE algorithm. The species are determined by the species
radius parameter, which is a user-specified and problem de-
pendent parameter. As such, a careless selection of its value
may result in deterioration of the algorithm’s performance.

Moreover, DE with local selection [21] designs a mu-
tation strategy with two main components: a local and a
global mutation rule. Throughout the evolutionary process,
the two rules are probabilistically selected by a fixed and
pre-specified probability. As expected, the global mutation
rule is responsible for investigating unexplored regions of
the search space, whilst the local mutation rule contributes
towards its exploitative ability. The algorithm has been further
hybridized with several mechanisms such as the crowding
technique and a specialized multi-start local search proce-
dure [22]. A parallel implementation of DE has been pro-
posed by Zaharie to address multimodal problems [9]. In
this approach, Zaharie uses the classic “island model” to
locate multiple global optima simultaneously. Recent niching
DE variants include ensembles of niching techniques such
as the restricted tournament selection [23], the incorporation
of crowding, fitness sharing and speciation in DE with the
concept of neighborhood mutations [24]. Apart from the DE
algorithm, various methodologies have been introduced in the
EC literature which aim to optimize multimodal problems.
Representative examples include the topological species con-
servation approach [14], Particle Swarm Optimizers [25]–[27],
evolutionary strategies [28], multi-objective algorithms [29],
and artificial immune systems [30], [31].

Furthermore, a new family of mutation operators has been
recently proposed in [10], namely the DE/nrand family, which
is able to efficiently address multimodal problems. Their
key component is that, to induce the required niching effect,
they simply incorporate information about the spatial neigh-
borhoods of the population into the mutation operators of
the algorithm. Thus, the resulting algorithms can locate and
maintain several global optima in their populations, without
introducing any additional parameters. Although the aforemen-
tioned mutation operators have stable performance through
the evolution process, the DE/nrand family considers nearest
neighbor calculations for each individual, which incurs an
increase in the computational cost. Nevertheless, this can
be handled by employing index-based neighborhoods with
various topology structures [11].

It is evident that the majority of the aforementioned niching
algorithms introduce one or more additional parameters, apart
from the control parameter of the used algorithm, e.g. the
mutation and recombination factors in the case of DE. In
turn, to the best of our knowledge, there has been no attempt
to tackle the population size parameter effectively in the
niching DE algorithms literature. However, a Particle Swarm
Optimization algorithm has been proposed which adopts a
dynamic archive mechanism to alleviate the problem of having
to tune the swarm size parameter [17]. Initial experimental
results exhibit competitive and robust performance, resulting
in a very promising approach [17].

Inspired by the above findings, we take as a baseline
model the DE/nrand family and propose a parameter-free
niching algorithm by incorporating two additional mechanisms
within its structure: a well known control parameter adaptation
technique from one of the best performing DE variants [16]
and the aforementioned external dynamic archive along with
a reinitialization mechanism [17]. The proposed approach, its
main characteristics and its implementation details are briefly
described in the following section.

III. NICHING DIFFERENTIAL EVOLUTION WITH DYNAMIC
ARCHIVE

Motivated by the simple structure of the DE/nrand family
of mutation strategies [10], the proposed approach takes as a
baseline model the DE/nrand/1 algorithm. DE/nrand/1 follows
the basic structure of the classic Differential Evolution algo-
rithm [18] (i.e. utilization of the binomial crossover and the
elitist selection operator) and interacts only with the mutation
strategy. In general, information about the real (spatial) neigh-
borhoods of the population is incorporated into DE’s mutation
strategies. As such, each individual is evolved by using (as
a base vector) its nearest neighbor individual and random
vector differences in an attempt to keep the individual within
the vicinity of an optimum and simultaneously to explore
effectively the search space.

More specifically, given a population of NP individuals,
at each generation g, the mutation strategy will evolve each
individual xig, i = 1, 2, . . . , NP , to generate the mutant
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individual vig+1 according to the following equation:

vig+1 = xNNi
g + F (xr1g − xr2g ), (1)

where xNNi
g is the spatial nearest neighbor of the current indi-

vidual xig, F > 0 is the mutation or scaling factor, and r1, r2
are randomly chosen indexes (r1, r2 ∈ {1, 2, . . . , NP} \ {i}).

DE has two main control parameters that affect the search
procedure: the mutation and recombination factor. The main
role of the mutation factor is to control the impact of the vec-
tor’s differences, which mainly influences the convergence rate
of the algorithm [19]. The recombination is mainly responsible
for the diversity of the population. Improper selection of
their values may lead to very poor performance and destroy
the dynamics of the algorithm. Several techniques have been
proposed in the literature to select, adapt or self adapt their
values [16], [32]. Here, to appropriately select the values of
these parameters, we adopt the technique proposed in the
context of the JADE algorithm, which is one of the most
successful DE techniques in the literature [32].

Briefly, JADE associates each individual, xig , with a muta-
tion (Fi) and a recombination (CRi). At each generation, both
parameters are drawn from specific distributions with different
parameters (CRi ∼ N(µCR, 0.1), Fi ∼ Cauchy(µF , 0.1)). Af-
ter the main evolution steps, the parameter of the distributions
are updated according to the following equations:

µF = (1− c) · µF + c ·meanL(SF ), (2)
µCR = (1− c) · µCR + c ·meanA(SCR), (3)

where µCR and µF are the corresponding mean values, c
is a constant with c ∈ [0, 1] usually c = 0.1, meanA(·)
denotes the mean value of a vector, SCR denotes a vector
with the successful recombination probabilities of the current
generation and meanL(·) is the Lehmer mean, which can be

calculated as meanL(SF ) =
∑

F∈SF
F 2∑

F∈SF
F . Further details about

the parameter adaptation technique can be found in [16].
Moreover, the main objective of the proposed algorithm is to

alleviate the problem of having to tune the population size and
allow the algorithm to maintain good performance regardless
of the population size value. To accomplish this goal, we
incorporate a dynamic archive proposed in [17] to record good
solutions found by the algorithm along with a re-initialization
procedure to continue searching for additional good solutions
in unexplored regions of the search space. Specifically, when a
new individual xig+1 is selected for the next generation it will
be determined whether or not to be inserted into the dynamic
archive. If the new individual is qualified for insertion then it
is kept in the archive. If the solution is already in the archive
(Algorithm 1, lines 20-22) then this solution is re-initialized
within the bounds of the problem at hand, in an attempt to
search for unexplored regions. The algorithmic scheme of the
proposed algorithm (dADE/nrand/1) and the dynamic archive
are briefly illustrated in Algorithm 1 and 2 respectively.

In general, the archive has the ability to record the “good”
solutions found during evolution. A potential solution p is
added in the archive only if the archive does not contain any

Algorithm 1 The algorithmic scheme for dADE/nrand/1.
1: Initialize population with NP individuals, g = 0
2: while termination criteria not satisfied do
3: Calculate the R value based on Eq. (4).
4: for i = 1 to NP do
5: Update parameters F and CR based on Eqs. (2),(3)
6: Select individuals xr1g , xr2g , and xNNi

g

7: /*Mutate xig and generate the mutant vector vig :*/
8: for j = 1 to D do
9: vi,jg = x

NNi
g + F (xr1,jg − xr2,jg ),

10: end for
11: jrand = a uniformly distributed random integer ∈ {1, 2, . . . , D}
12: /*Recombine the mutant vector vig :*/
13: for j = 1 to D do

14: ui,jg =

{
vi,jg , if (randi,j(0, 1) 6 CR or j = jrand),

xi,jg , otherwise,
15: end for
16: /*Select the final vector xig+1:*/
17: if f(uig) < f(xig) then
18: xig+1 = uig
19: Insert xig+1 to the Dynamic Archive based on Algorithm 2.
20: if xig+1 is already in Archive (found == TRUE) then
21: Re-initialize individual xig+1
22: end if
23: else
24: xig+1 = xig
25: end if
26: end for
27: g = g + 1
28: end while

Algorithm 2 The algorithmic scheme for building a dynamic
archive.
Input: p ∈ RD a potential solution, R ∈ R the niche radius, and ε an
accuracy level or acceptance threshold
Output: S a list of solutions that are kept in the dynamic
archive
1: found ← FALSE; update ← FALSE;
2: if S = ∅ then
3: S ← S ∪ {p}; δ ← f(p);
4: else
5: if f(p) > δ then
6: δ ← f(p); update ← TRUE;
7: end if
8: if update or |f(p)− δ| < ε then
9: for each s ∈ S do

10: if ‖p− s‖ ≤ R then
11: if f(p) > f(s) then
12: s← p;
13: found ← TRUE;
14: break;
15: else
16: found ← TRUE;
17: break;
18: end if
19: end if
20: end for
21: if not found then
22: S ← S ∪ {p};
23: end if
24: end if
25: end if

better or similar solutions. We consider that two solutions
are similar, if their Euclidean distance is smaller than the
identification radius R (see below in Eq. (4)). As depicted
in Algorithm 2, each potential solution is compared with the
saved solutions in the archive. If a potential solution p has
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either a better fitness value than the best fitness value found
so far (i.e. the δ threshold), or a relatively good fitness value
compared with the best solution in the archive (|f(p)−δ| < ε,
where ε is an acceptable level of accuracy), then it will be
compared with the saved solutions in the archive. p is added
in the archive, only if the archive does not contain any similar
solutions.

The key idea behind the identification radius R is to decide
whether a newly found solution is in the vicinity of a globally
optimum solution or not. In the first stages of evolution, it
is easy to identify the large basins of attraction. Thus, large
radius values are sufficient. However, as the evolution process
continues, discovering niches located on smaller basins of
attraction becomes a major challenge. Thus, as suggested
in [33] the identification radius R can be adaptively chosen
during evolution. As such, the radius R, is calculated as the
minimum among the average distances of the individuals’
positions at the current generation g. Specifically, R can be
calculated according to the following equations:

R = min{r1, r2, . . . , rg}, (4)

where rg reflects the convergence degree of all individuals in
the population, and can be defined as rg = (

∑n
i=1 disti)/n

where disti = min{‖xig − xjg‖ : ∀xig, xjg ∈ in the population
\xig 6= xjg}.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the performance and the char-
acteristics of the proposed approach, by providing comparative
experimental results with other DE variants that are designed
to tackle multimodal optimization problems. Their effective-
ness is verified through a benchmark function set proposed
recently in the “IEEE CEC’2013 Special Session and Compe-
tition on Niching Methods for Multimodal Optimization” [34].
The benchmark function set contains twenty instances of
twelve multimodal functions with various characteristics. The
first eight are well-known simple low-dimensional multimodal
functions, whilst the remaining four are scalable composition
functions of challenging multimodal functions. Most of the
functions share common properties such as multiple local and
global optima, deceptiveness, non-symmetric optima and non-
separable optima. A detailed description of the benchmark
function set and its characteristics can be found in the as-
sociated technical report [34].

To evaluate the efficiency of the proposed algorithm
(dADE/nrand/1), we compare it with two DE variants: the
well known Crowding Differential Evolution [15] and the
recently proposed DE/nrand/1 algorithm [10]. Throughout this
section, we adopt the experimental design and the parameter
settings proposed in [34]. As such, for each experimental result
presented in this section, we conduct 50 independent runs and
report their average values. In terms of the control parameters
for DE, we have used F = 0.5 and CR = 0.9 which is a
common parameter setting in the literature [10], [19], [20],
[34]. In addition, to make it easy to compare the approaches
with the presented results in [34], for each experiment, we have

employed populations with NP = 100 individuals. It has to
be noted that the aforementioned parameter setting is not fine-
tuned on the considered benchmark set, and the parameters
should not be considered to be optimal for the considered
functions.

To measure if the algorithm at hand is able to locate
accurately the desired number of global optima, we initially
have to define a tolerance level in which a computed solution
can be considered as a global optimum, entitled the level
of accuracy, ε ∈ (0, 1]. Thereby, a computed solution is
characterized as a global optimum if its distance from a known
global optimum is less than the given level of accuracy ε.
Usually, the applied distance corresponds to the Euclidean
distance but it can be easily changed, based on the problem’s
characteristics. Afterwards, to determine if all global optima
are found, we adopt the Algorithm 1 proposed in [34]. The
performance of the implemented algorithms is compared using
two well known measures, as suggested by the CEC’2013
competition [34], namely the peak ratio (PR) and the success
rate (SR) [15].

Three sets of experiments have been conducted. Firstly,
we evaluate the proposed algorithm on the recently proposed
benchmark suite defined in [34]. In turn, we study the behavior
of the dADE/nrand/1 algorithm in two different qualitative
aspects: its convergence speed characteristics and its sensitivity
to various population size values. To this end, the first objective
is to study the performance of the proposed algorithm in
terms of locating a large number of global optima through
different levels of accuracy. Based on the experimental proce-
dure proposed in [34], we incorporate five levels of accuracy,
ε ∈ {10−1, 10−2, . . . , 10−5}. It can be easily observed that,
as the accuracy level increases, this task is getting more
challenging, since the positions of the global optima should
be computed more accurately. Generally speaking, the perfor-
mance of niching algorithms tends to decrease, in terms of
both PR and SR measures, as the accuracy level increases.
Due to space limitations, we demonstrate experimental results
for the proposed dADE/nrand/1 algorithm, and its ancestor
DE/nrand/1, whilst we omit the experimental results for the
Crowding DE algorithm, which (as presented in [34]) performs
either similarly or worse, when compared with the DE/nrand/1
algorithm on most of the functions.

Tables I and II present extensive experimental results over
all benchmark functions for the DE/nrand/1 and the proposed
dADE/nrand/1 algorithm, respectively. Here, we mark in bold-
face the algorithm that exhibits better performance in terms
of either the PR or the SR measure. Based on the experi-
mental results, in the majority of the considered functions,
the proposed algorithm (dADE/nrand/1) exhibits either better
or equally good performance as compared with DE/nrand/1,
in terms of both PR and SR measures. Specifically, in the
first five functions, both algorithms behave similarly, exhibit-
ing best performance independently of the accuracy level.
This behavior changes in the next five functions (F6(2D)–
F7(3D)), where dADE/nrand/1 algorithm clearly outperforms
its ancestor DE/nrand/1 on both PR and SR measures. It
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TABLE I
PEAK RATIOS AND SUCCESS RATES OF THE DE/NRAND/1/BIN

ALGORITHM.

Accuracy F1 (1D) F2 (1D) F3 (1D) F4 (2D) F5 (2D)
level ε PR SR PR SR PR SR PR SR PR SR
1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Accuracy F6 (2D) F7 (2D) F8 (2D) F6 (3D) F7 (3D)
level ε PR SR PR SR PR SR PR SR PR SR
1.0E-01 0.450 0.000 0.347 0.000 0.108 0.000 0.097 0.000 1.000 1.000
1.0E-02 0.438 0.000 0.346 0.000 0.105 0.000 0.095 0.000 1.000 1.000
1.0E-03 0.440 0.000 0.349 0.000 0.113 0.000 0.099 0.000 0.998 0.980
1.0E-04 0.434 0.000 0.337 0.000 0.112 0.000 0.095 0.000 1.000 1.000
1.0E-05 0.000 0.000 0.333 0.000 0.113 0.000 0.094 0.000 1.000 1.000

Accuracy F9 (2D) F10 (2D) F11 (2D) F11 (3D) F12 (3D)
level ε PR SR PR SR PR SR PR SR PR SR
1.0E-01 0.683 0.000 0.855 0.240 0.667 0.000 0.667 0.000 0.522 0.000
1.0E-02 0.673 0.000 0.837 0.220 0.667 0.000 0.667 0.000 0.535 0.000
1.0E-03 0.683 0.000 0.815 0.140 0.667 0.000 0.667 0.000 0.507 0.000
1.0E-04 0.673 0.000 0.815 0.160 0.667 0.000 0.667 0.000 0.502 0.000
1.0E-05 0.670 0.000 0.777 0.100 0.667 0.000 0.667 0.000 0.507 0.000

Accuracy F11 (5D) F12 (5D) F11 (10D) F12 (10D) F12 (20D)
level ε PR SR PR SR PR SR PR SR PR SR
1.0E-01 0.677 0.000 0.345 0.000 0.403 0.000 0.227 0.000 0.130 0.000
1.0E-02 0.663 0.000 0.325 0.000 0.343 0.000 0.167 0.000 0.127 0.000
1.0E-03 0.663 0.000 0.295 0.000 0.323 0.000 0.152 0.000 0.130 0.000
1.0E-04 0.663 0.000 0.290 0.000 0.270 0.000 0.125 0.000 0.125 0.000
1.0E-05 0.657 0.000 0.287 0.000 0.250 0.000 0.127 0.000 0.123 0.000

TABLE II
PEAK RATIOS AND SUCCESS RATES OF THE PROPOSED

DADE/NRAND/1/BIN ALGORITHM.

Accuracy F1 (1D) F2 (1D) F3 (1D) F4 (2D) F5 (2D)
level ε PR SR PR SR PR SR PR SR PR SR
1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Accuracy F6 (2D) F7 (2D) F8 (2D) F6 (3D) F7 (3D)
level ε PR SR PR SR PR SR PR SR PR SR
1.0E-01 1.000 1.000 1.000 1.000 0.985 0.500 0.837 0.020 1.000 1.000
1.0E-02 1.000 1.000 0.962 0.240 0.978 0.380 0.595 0.000 1.000 1.000
1.0E-03 1.000 1.000 0.892 0.020 0.981 0.280 0.545 0.000 1.000 1.000
1.0E-04 0.984 0.780 0.823 0.000 0.967 0.140 0.431 0.000 1.000 1.000
1.0E-05 0.000 0.000 0.732 0.000 0.947 0.020 0.356 0.000 1.000 1.000

Accuracy F9 (2D) F10 (2D) F11 (2D) F11 (3D) F12 (3D)
level ε PR SR PR SR PR SR PR SR PR SR
1.0E-01 0.893 0.640 0.998 0.980 0.743 0.140 0.923 0.700 1.000 1.000
1.0E-02 0.667 0.000 0.887 0.440 0.667 0.000 0.667 0.000 0.620 0.000
1.0E-03 0.667 0.000 0.745 0.000 0.667 0.000 0.667 0.000 0.615 0.000
1.0E-04 0.667 0.000 0.740 0.000 0.667 0.000 0.667 0.000 0.627 0.000
1.0E-05 0.667 0.000 0.728 0.000 0.667 0.000 0.667 0.000 0.620 0.000

Accuracy F11 (5D) F12 (5D) F11 (10D) F12 (10D) F12 (20D)
level ε PR SR PR SR PR SR PR SR PR SR
1.0E-01 0.873 0.540 0.938 0.760 0.683 0.080 0.420 0.000 0.030 0.000
1.0E-02 0.667 0.000 0.472 0.000 0.660 0.000 0.143 0.000 0.000 0.000
1.0E-03 0.667 0.000 0.417 0.000 0.630 0.000 0.063 0.000 0.002 0.000
1.0E-04 0.667 0.000 0.403 0.000 0.633 0.000 0.018 0.000 0.005 0.000
1.0E-05 0.667 0.000 0.410 0.000 0.627 0.000 0.000 0.000 0.000 0.000

is worth noting that the proposed algorithm exhibits great
performance gains for the majority of the aforementioned
functions for almost all accuracy levels. This is especially
the case in functions F6(2D)–F6(3D) dADE/nrand/1 where
it is able to successfully locate a greater number of global
optima for several accuracy levels, whilst DE/nrand/1 is not.
In turn, in the group of the last ten functions (Composition

functions), which are the most challenging functions of the
function set, both algorithms exhibit a problem dependent
performance. dADE/nrand/1 exhibits a superior performance
for the first accuracy level in the majority of the functions
in this group, whilst as the accuracy level increases both
algorithms seem to behave differently. In three functions, both
algorithms perform equally well (F9(2D), F11(2D), F11(3D))
but they cannot manage to locate accurately all global op-
tima. dADE/nrand/1 exhibits superior performance gains in
three functions (F11(5D), F12(5D), F11(10D)) comparing with
DE/nrand/1, whilst DE/nrand/1 performs better in the last two
functions (F12(10D) and F12(20D)). In general, the usage of
the archive seems to have substantial performance gains in
the majority of the tested functions. Concluding, based on
the aforementioned initial results, it seems that the proposed
approach is very promising and can efficiently tackle very
challenging multimodal problems.

A. Convergence speed characteristics

In this section, we investigate the convergence speed char-
acteristics of all considered algorithms. Thus, for the algorithm
at hand, convergence speed is determined by the number of
function evaluations that the algorithm requires to locate all
global optima, within a fixed level of accuracy, ε. Due to
limited space, we compare only the DE/nrand/1 algorithm with
the proposed dADE/nrand/1, since it was the best performing
algorithm for the majority of the considered functions as
presented in [34]. We evaluate their performance in two qual-
itative different accuracy levels, ε ∈ {1.0E − 01, 1.0E − 04}.
The former corresponds to the easiest level of accuracy, whilst
the latter corresponds to one of the most demanding cases
considered in this work. Thus, in Table III we present the
average performance of the algorithms (Mean) and its standard
deviation (St.D.). We mark in boldface the algorithm that
performs better, i.e. it has a lower mean number of function
evaluations. In addition, we underline the instances where
the corresponding algorithm performs significantly better. The
statistically significant differences of the observed conver-
gence speed performance have been verified by a two-sided
Wilcoxon rank sum test at the 5% significance level.

It can be clearly observed, in Table III, that in the majority
of the considered functions the dADE/nrand/1 produces faster
convergence speed. The performance gains are more evident
in the first accuracy level (ε = 10−1), since it outperforms
DE/nrand/1 in 13 out of 20 cases. Specifically, on the last 15
functions, the proposed approach exhibits better performance
(lower mean number of function evaluations), indicating that it
can accurately detect the basin of attractions of the considered
functions within the given budget of function evaluations.
In contrast, DE/nrand/1 performs significantly better in the
first five low-dimensional functions. This is expected, since
the proposed scheme incorporates a re-initialization procedure
which may require a higher number of function evaluations
in some cases. As such, in low dimensional or easily solvable
functions, the aforementioned procedure might increase the
required number of function evaluations in order to detect all
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TABLE III
CONVERGENCE SPEEDS OF THE DE/NRAND/1 AND THE PROPOSED DADE/NRAND/1 ALGORITHM IN TWO ACCURACY LEVELS ε ∈ {1.0E-01,1.0E-04}.

Accuracy level ε = 1.0E-01
Algorithm Function F1(1D) F2(1D) F3(1D) F4(2D) F5(2D) F6(2D) F7(2D) F6(3D) F7(3D) F8(2D)

DE/nrand/1 Mean 5768.0 200.0 200.0 2740.0 274.0 200000.0 200000.0 400000.0 400000.0 3162.0
St.D. 1442.000 0.000 0.000 500.612 100.631 0.000 0.000 0.000 0.000 695.727

dADE/nrand/1 Mean 5922.1 221.0 203.4 3106.8 367.2 27458.5 2910.9 367281.6 396811.4 3391.8
St.D. 1672.615 38.493 14.429 845.307 120.634 6903.683 617.711 42450.483 22547.090 652.852

Algorithm Function F9(2D) F10(2D) F11(2D) F11(3D) F12(3D) F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)

DE/nrand/1 Mean 200000.0 164480.0 200000.0 400000.0 400000.0 400000.0 400000.0 400000.0 400000.0 400000.0
St.D. 0.000 64129.919 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

dADE/nrand/1 Mean 145455.6 114735.2 182184.9 219868.9 61965.4 292772.7 200502.8 392376.0 340214.0 400000.0
St.D. 58240.354 21749.001 47527.121 154229.939 16890.382 133135.821 127782.460 33324.142 95903.583 0.000

Accuracy level ε = 1.0E-04
Algorithm Function F1(1D) F2(1D) F3(1D) F4(2D) F5(2D) F6(2D) F7(2D) F6(3D) F7(3D) F8(2D)

DE/nrand/1 Mean 22886.0 1552.0 1258.0 13610.0 3806.0 200000.0 200000.0 400000.0 400000.0 9858.0
St.D. 2689.056 386.106 781.179 1399.453 618.890 0.000 0.000 0.000 0.000 833.015

dADE/nrand/1 Mean 20201.6 1800.8 1289.5 12703.2 3567.1 150328.0 200000.0 393666.8 400000.0 12903.7
St.D. 2787.875 586.007 565.283 1668.362 651.549 35209.408 0.000 17665.255 0.000 2168.516

Algorithm Function F9(2D) F10(2D) F11(2D) F11(3D) F12(3D) F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)

DE/nrand/1 Mean 200000.0 181658.0 200000.0 400000.0 400000.0 400000.0 400000.0 400000.0 400000.0 400000.0
St.D. 0.000 42543.630 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

dADE/nrand/1 Mean 200000.0 200000.0 200000.0 400000.0 400000.0 400000.0 400000.0 400000.0 400000.0 400000.0
St.D. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Fig. 1. Mean number of global optima located by the algorithms on functions
F6(3D), F7(3D), F10(2D), and F12(5D) over 50 independent experiments
(accuracy level ε = 10−1).

the global optima. In the second and more challenging level
of accuracy, it can be clearly observed that we cannot draw
firm conclusions since both algorithms for the majority of the
functions did not succeed in locating all global optima so-
lutions. However, in the first 10 functions, dADE/nrand/1 has
either better (in F1(1D), F4(2D), F5(2D), F6(2D), and F6(3D))
or equally good (F3(1D), F7(2D), and F7(3D)) convergence
speed when comparing with DE/nrand/1.

Moreover, Figure 1 demonstrates the mean number of
global optima found by the considered algorithms during the
experiments, in the accuracy level of ε = 10−1. It can be
easily observed that the proposed approach exhibits a stable
and robust behavior in all considered cases. As expected,
the nature of the archive enriches the characteristics of the
algorithm and helps maintain the located global optima during
evolution. In contrast, on most functions both DE/nrand/1 and

Crowding DE are able to discover the basis of attraction of
several global optima in the first stages of the evolution, but
tend to lose them at later stages. For example, in functions
F7(3D) and F12(5D), both algorithms detect a high number
of global optima in the early stages of evolution, but cannot
maintain them for a long period of time, e.g. for about 500
and 1000 generations in F7(3D) and F12(5D) respectively.
Comparing DE/nrand/1 with the Crowding DE, it can be
clearly observed that in most functions DE/nrand/1 detects
many global optima faster, but it cannot maintain them in its
population for a long time, whilst the Crowding DE tends to
maintain them for longer periods of time. In summary, the
proposed approach demonstrates a robust and stable behavior
that does not demand a larger number of function evaluations
as is the case with other algorithms.

B. Population size effect

The experimental results section ends by studying the ability
of the considered algorithm to detect a large number of global
optima against different population size values. As such, for
a challenging accuracy level, ε = 10−4, we select the two
and three dimensional versions of Shubert (F6(2D), F6(3D))
and Vincent (F7(2D), F7(3D)), and for various population size
values, NP ∈ {20, 30, . . . , 200}, we measure the number of
the global optima found by the corresponding algorithm.

To this end, Figure 2 illustrates the mean number of
global optima found by the considered algorithms for the
different population size values. It can be clearly observed
that dADE/nrand/1 performs well on all considered functions
independently of the population size. The incorporation of the
dynamic archive, along with the creation of new randomly
generated solutions, enhances the ability of DE/nrand/1 algo-
rithm to detect a large number of global optima and to keep
them in its population until the end of the runs. Specifically, in
the considered cases, dADE/nrand/1 is clearly able to detect
a high number of global optima even when the population
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Fig. 2. Mean number of global optima found by the implemented algorithms against different population size values on the F6(2D), F7(2D), F6(3D) and
F7(3D) functions (ε = 10−4)

consists of only 20 individuals. It is worth noting that, for the
three dimensional cases (F6(3D), F7(3D)), dADE/nrand/1 can
locate about 3 to 10 times more global optima solutions than
the other approaches.

In contrast, the performance of both the Crowding DE and
the DE/nrand/1 algorithm is inferior when compared with
dADE/nrand/1, whilst they demonstrate a problem and algo-
rithm dependent behavior. This is a very common phenomenon
in the literature of multimodal optimization methodologies.
The majority of the proposed methodologies are strongly influ-
enced by the selected population size (often a large population
size is essential to a greater number of global optima), whilst
careless selections may result in substantial deterioration of
the performance of the method at hand. Specifically, based on
the algorithm’s performance, Figure 2 reveals two different
trends. The DE/nrand/1 algorithm (in all four cases) and the
Crowding DE (in both the 2D and 3D versions of F7) exhibit
stable performance trends against population size, where their
performance increases as the population size increases. In
addition, the Crowding DE (in both the 2D and 3D versions
of F6) exhibits high performance gains in a small range of
population size values, i.e. when NP ∈ {30, 40, . . . , 80} and
NP ∈ {30, 40, . . . , 100} for the 2D and 3D versions of
the F6 function respectively. Finally, we have observed that
DE/nrand/1 performs worse against the Crowding DE because,
with the fixed budget of function evaluations, it locates a high
number of global optima but it cannot maintain all of them at
the end of the execution.

To conclude, the incorporation of the dynamic archive seems

to tackle the population size influence effectively and it also
alleviates the problem of having to fine-tune the population
size parameter. Its incorporation within other state-of-the-art
methodologies may produce similar effects.

V. CONCLUSIONS

It has been recognized that most of the niching algo-
rithms introduce one or more parameters to the algorithm
at hand. Additionally, the majority of the niching method-
ologies proposed in the literature are substantially influenced
by the specified population size. In this work, we attempted
to overcome the population size influence by proposing a
parameter-free niching algorithm with robust performance
regardless of the selection of the population size. To this
end, we incorporate into a Niching Differential Evolution
algorithm, namely DE/nrand/1, two mechanisms: a control
parameter adaptation technique [16] and an external dynamic
archive along with a reinitialization mechanism [17]. The first
mechanism efficiently adapts the control parameters of DE,
whilst the second mechanism is responsible for allowing the
algorithm to explore uninvestigated regions of the search space
and simultaneously to keep the best solutions found by the
algorithm, independently of the population size.

Experimental verification on the recently proposed bench-
mark suite of the “IEEE CEC’2013 Special Session and
Competition on Niching Methods for multimodal Optimiza-
tion” [34] and comparisons with the two DE variants clearly
indicate that the proposed algorithm produces competitive and
very promising results. In the majority of the benchmark func-
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tions, it locates and maintains a large number of global optima,
resulting in a robust performance. Additionally, in most of the
considered functions, the proposed approach is able to detect
all global optima in fewer function evaluations when compared
against the considered DE variants. Initial experimental studies
indicate that the proposed algorithm is able to detect a very
large number of global optima with minimal population size
values, which makes it an appealing technique for multimodal
problems with unknown characteristics.

Future work includes extensive investigation of the dynam-
ics, the characteristics, the scalability and the complexity of
the proposed algorithm on multimodal problems with higher
dimensions.
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