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Abstract

In this paper, we study the class of Higher-Order Neural Networks and es-
pecially the Pi-Sigma Networks. The performance of Pi-Sigma Networks is
evaluated through several well known neural network training benchmarks.
In the experiments reported here, Distributed Evolutionary Algorithms are
implemented for Pi-Sigma neural networks training. More specifically the
distributed versions of the Differential Evolution and the Particle Swarm
Optimization algorithms have been employed. To this end, each processor is
assigned a subpopulation of potential solutions. The subpopulations are in-
dependently evolved in parallel and occasional migration is employed to allow
cooperation between them. The proposed approach is applied to train Pi-
Sigma networks using threshold activation functions. Moreover, the weights
and biases were confined to a narrow band of integers, constrained in the
range [−32, 32]. Thus, the trained Pi-Sigma neural networks can be repre-
sented by using 6 bits. Such networks are better suited than the real weight
ones for hardware implementation and to some extend are immune to low
amplitude noise that possibly contaminates the training data. Experimental
results suggest that the proposed training process is fast, stable and reliable
and the distributed trained Pi-Sigma networks exhibited good generalization
capabilities.
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1. Introduction

Evolutionary Algorithms (EAs) are nature inspired problem solving op-
timization algorithms, which employ computational models of evolutionary
processes. Various evolutionary algorithms have been proposed in the litera-
ture. The most important ones are: Genetic Algorithms [1, 2], Evolutionary
Programming [3, 4], Evolution Strategies [5, 6], Genetic Programming [7],
Particle Swarm Optimization [8] and Differential Evolution algorithms [9].
The algorithms mentioned above share the common conceptual base of sim-
ulating the evolution of a population of individuals using a predefined set of
operators. Generally, the operators utilized belong to one of the following
categories: the selection and the search operators. The most commonly used
search operators are mutation and recombination. EA’s are parallel and di-
stributed implementations and they are inspired by niche formation. Niche
formation is a common biological phenomenon [10]. Niches could aid the
differentiation of the species by imposing reproduction restrictions. Many
natural environments can lead to niche formation. For example, remote is-
lands, high mountains and isolated valleys, restrict the species and therefore
the evolution process. Although diversity tends to be low in each subpopula-
tion, overall population diversity is maintained through isolation. However,
occasionally an individual may escape and reach nearby niches, increasing
the diversity of their populations [10].

In this paper, we study the class of Higher-Order Neural Networks (HONNs)
and in particular Pi-Sigma Networks (PSNs), which were introduced by Shin
and Ghosh [11]. Although PSNs employ fewer weights and processing units
than HONNs they manage to indirectly incorporate many of their capabili-
ties and strengths. PSNs have effectively addressed several difficult tasks,
where traditional Feedforward Neural Networks (FNNs) are having diffi-
culties, such as zeroing polynomials [12] and polynomial factorization [13].
Here, we study PSN’s performance on several well known neural network
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training problems. In our experiments, we trained PSNs with small inte-
ger weights and threshold activation functions, utilizing distributed Evo-
lutionary Algorithms. More specifically, modified distributed versions of
the Differential Evolution (DE) [9, 14] and Particle Swarm Optimization
(PSO) [8, 15] algorithms have been used. DE and PSO have proved to be
effective and efficient optimization methods on numerous hard real-life prob-
lems [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. The distributed EAs has been
designed keeping in mind that the resulting integer weights and biases re-
quire less bits to be stored and the digital arithmetic operations between
them are easier to be implemented in hardware. An additional advantage of
the proposed approach is that no gradient information is required; thus (in
contrast to classical methods) no backward passes were performed.

Hardware implemented PSNs with integer weights and threshold activa-
tion functions can continue training, even during the operation of the system,
if the input data are changing (on-chip training) [14, 19]. Another advantage
of neural networks with integer weights and threshold activation functions is
that the trained neural networks are to some extend immune to noise in the
training data. Such networks only capture the main feature of the dataset.
Low amplitude noise that possibly contaminates the training set cannot per-
turb the discrete weights, because those networks require relatively large
variations to “jump” from one integer weight value to another [14].

If the network is trained in a constrained weight space, smaller weights are
found and less memory is required. On the other hand, the network training
procedure can be more effective and efficient when larger integer weights are
allowed. Thus, for a given application a trade off between effectiveness and
memory consumption has to be considered. Here, Pi-Sigma neural networks
with six bit weight representation have been utilized, i.e. integer weights
confined in the range [−32, 32]. Although the weights are restricted, the
trained PSNs can effectively tackle several benchmark problems, as presented
in the experimental results.

The remaining of this paper is organized as follows. Section 2 reviews
various parallel Evolutionary Algorithm implementations. Section 3 briefly
describes the mathematical model of HONNs and PSNs. Section 4 is devoted
to the presentation of the distributed DE and PSO optimization algorithms.
Extensive experimental results are presented in Section 5. The paper ends
with a discussion and concluding remarks.
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2. Parallel and Distributed Evolutionary Algorithms

Following the biological niche formation many parallel and distributed
Evolutionary Algorithm implementations exist [24, 25, 26, 27, 28, 29]. The
most widely known are [24, 25, 29]:

a) single-population (global) master-slave algorithms,

b) single-population fine-grained algorithms,

c) multiple-population coarse-grained algorithms, and

d) hierarchical parallel algorithms (hybrid approach).

In EA literature single-population fine-grained algorithms are also called
cellular EAs (cEAs). The multiple-population coarse-grained algorithms are
also known as island models or distributed EAs (dEAs). These two approa-
ches are most popular among EA researchers and seem to provide a better
sampling of the search space. Additionally, they improve the numerical and
runtime behavior of the basic algorithm [10, 24, 25, 29].
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Figure 1: Parallel and distributed Evolutionary Algorithms: a) single-population master-
slave algorithms, b) single-population fine-grained algorithms, c) multiple-population
coarse-grained algorithms, and d) hybrid approaches

In a master-slave implementation there exists a single panmictic popula-
tion (selection takes place globally and any individual can potentially mate
with any other), but the evaluation of the fitness of each individual is per-
formed in parallel among many processors. This approach does not affect the
behavior of the EA algorithm; the execution is identical to a basic sequential
EA.

According to the cEA approach each individual is assigned to a single
processor and the selection and reproduction operators are limited to a small
local neighborhood. Neighborhood overlap is permitting some interaction
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among all the individuals and allows a smooth diffusion of good solutions
across the population.

We must note that one could use a uniprocessor machine to run cEAs and
dEAs and still get better results than with sequential panmictic EAs. The
main difference between cEAs and dEAs is the separation of individuals into
distinct subpopulations (islands). In biological terms, dEAs resembles dis-
tinct semi-isolated populations in which evolution takes place independently.
dEAs are more sophisticated as they occasionally exchange individuals be-
tween subpopulations, utilizing the migration operator. The migration op-
erator defines the topology, the migration rate, the migration interval, and
the migration policy [25, 26, 30, 31]. The migration topology determines
island interconnections. The migration rate is the number of individuals
exchanged during the migration. The migration interval is the number of
generations between two consecutive calls of the operator, while the migra-
tion policy defines the exchanged individuals and their integration within
the target subpopulations. The migration rate and migration interval are
the two most important parameters, controlling the quantitative aspects of
migration [24, 25]. In the case where the genetic material, as well as the
selection and recombination operators, are the same for all the individuals
and all subpopulations of a dEA, we call these algorithms uniform. On the
other hand, when different subpopulations evolve with different parameters
and/or with different individual representations, the resulting algorithm is
called nonuniform dEA [32, 33]. For the rest of the paper we focus on uniform
dEAs.

Hierarchical parallel algorithms combine at least two different methods
of EA parallelization to form a hybrid algorithm. At the higher level exists
a multiple-population EA algorithm, while at the lower levels any kind of
parallel EA implementation can be utilized.

Algorithm 1 exhibits in pseudocode the asynchronous island model of an
EA (uniform dEA), which is executed in n parallel or distributed processors.
Both Distributed Differential Evolution and Distributed Particle Swarm Op-
timization algorithms are based on this scheme.

To conclude, the use of parallel and distributed EA implementation has
many advantages [32], such as:

1. finding alternative solutions to the same problem,

2. parallel search from multiple points in the space,

3. easy parallelization,
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Algorithm 1 The asynchronous island model

1: Initialize the population
2: while termination criteria are not satisfied do
3: Perform an EA step
4: if the solution is found then
5: Broadcast a termination message
6: end if
7: if migration interval is satisfied then
8: Select and send n individuals according to the migration rate, topol-

ogy and policy
9: end if

10: while the receive buffer is not empty do
11: Receive migrants according to migration policy
12: end while
13: end while

4. more efficient search, even without parallel hardware,

5. higher efficiency than sequential EAs, and

6. speedup due to the use of multiple CPUs.

For more information regarding parallel EA implementations, software
tools, and theory advances the interested reader could refer to the following
review papers and books [25, 26, 32, 34, 35].

3. Higher-Order Neural Networks and Pi-Sigma Networks

Higher-order Neural Networks (HONNs) expand the capabilities of stan-
dard Feedforward Neural Networks (FNNs) by including input nodes which
provide the network with a more complete understanding of the input pat-
terns and their relations. Basically, the inputs are transformed so that the
network does not have to learn the most basic mathematical functions, such
as squares, cubes, or sines. The inclusion of these functions enhances the net-
work’s understanding of a given problem and has been shown to accelerate
training on some applications. However, typically only second order networks
are considered in practice. The main disadvantage of HONNs is that the re-
quired number of weights increases exponentially with the dimensionality of
the input patterns.
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On the other hand, a Pi–Sigma Network (PSN) utilizes product (instead
of summation) nodes as the output units to indirectly incorporate some of
the capabilities of HONNs, while using fewer weights and processing units.
Specifically, PSN is a multilayer feedforward network that outputs products
of sums of the input components. It consists of an input layer, a single
‘hidden’ (or middle) layer of summing units, and an output layer of product
units. The weights connecting the input neurons to the neurons of the middle
layer are adapted during the learning process by the training algorithm, while
those connecting the neurons of the middle layer to the product units of the
output layer are fixed. For this reason the middle layer is not actually hidden
and the training process is significantly simplified and accelerated [11, 36, 37].

Let the input x = (1, x1, x2, . . . , xN )⊤, be an (N + 1)-dimensional vector,
where 1 is the input of the bias unit and xk, k = 1, 2, . . . , N denotes the k-th
component of the input vector. Each neuron in the middle layer computes
the sum of the products of each input with the corresponding weight. Thus,
the output of the j-th neuron in the middle layer is given by the sum:

hj = w⊤

j x =

N
∑

k=1

wkjxk + w0j ,

where j = 1, 2, . . . , K and w0j denotes a bias term. Output neurons compute
the product of the aforementioned sums and apply an activation function on
this product. An output neuron returns:

y = σ

(

K
∏

j=1

hj

)

,

where σ(·) denotes the activation function. The number of neurons in the
middle layer defines the order of the PSN. This type of networks are based
on the idea that the input of a K-th order processing unit can be represented
by a product of K linear combinations of the input components. Assuming
that (N + 1) weights are associated with each summing unit, there is a total
of (N +1)K weights and biases for each output unit. If multiple outputs are
required (for example, in a classification problem), an independent summing
layer is required for each one. Thus, for an M-dimensional output vector y, a
total of

∑M

i=1(N+1)Ki adjustable weight connections are needed, where Ki is
the number of summing units for the i-th output. This allows great flexibility
as the output layer indirectly incorporates some of the capabilities of HONNs
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utilizing a smaller number of weights and processing units. Furthermore, the
network can be either regular or can be easily incrementally expandable, since
the order of the network can be increased by adding another summing unit
in the middle layer without disturbing the already established connections.

A further advantage of PSNs is that we do not have to pre-compute the
higher order terms and incorporate them into the network, as is necessary
for a single layer HONN. PSNs are able to learn in a stable manner even
with fairly large learning rates [11, 36, 37]. The use of linear summing units
makes the convergence analysis of the learning rules for PSN more accurate
and tractable. The price to be paid is that the PSNs are not universal
approximators. Despite that, PSNs demonstrated competent ability to solve
many scientific and engineering problems, such image compression [38], and
pattern recognition [11].

Although FNNs and HONNs can be simulated in software, hardware im-
plementation is required in real life applications, where high speed of exe-
cution is necessary. Thus, the natural implementation of FNNs or HONNs
(because of their modularity) is a distributed (or parallel) one [14]. In the
next section we present the distributed EA used in this study.

4. Neural Network Training Using Distributed Evolutionary Algo-
rithms

For completeness purposes let us briefly present the distributed versions of
Differential Evolution and Particle Swarm Optimization algorithms for higher
order neural network training. Our distributed implementations are based
on the Message Passing Interface standard, which facilitates the execution of
parallel applications.

4.1. The Distributed DE Algorithm

Differential Evolution (DE) is an optimization method, that utilizes con-
cepts borrowed from the broad class of Evolutionary Algorithms. DE is
capable of handling non-differentiable, discontinuous and multimodal objec-
tive functions. The method requires few, easily chosen, control parameters.
Extensive experimental results have shown that DE has good convergence
properties and in many cases outperforms other well known evolutionary
algorithms. The original DE algorithm as well as its distributed implemen-
tation have been successfully applied to FNN training [14, 16, 20]. Distribu-
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ted Differential Evolution (DDE) for Pi-Sigma networks training is presented
here.

More specifically, the modified DDE algorithm is a uniform dEA. DDE
maintains distinct subpopulations (islands) of potential integer solutions, in-

dividuals, to probe the search space. Each subpopulation of individuals is
randomly initialized in the optimization domain. At each iteration, called
generation, new individuals are generated through the combination of ran-
domly chosen individuals of the current subpopulation. Starting with a
subpopulation of NP integer weight vectors, wi

g, i = 1, 2, . . . ,NP , where g

denotes the current generation, each weight vector undergoes mutation to
yield a mutant vector, ui

g+1. The mutant vector that is considered here (for
alternatives see [9, 39]), is obtained through one of the following equations:

ui
g+1 = wbest

g + F (wr1

g − wr2

g ), (1)

ui
g+1 = wr1

g + F (wr2

g − wr3

g ), (2)

where wbest
g denotes the best member of the current generation and F > 0 is a

real parameter, called mutation constant that controls the amplification of the
difference between the two weight vectors. Moreover, r1, r2, r3 ∈ {1, 2, . . . , i−
1, i + 1, . . . ,NP} are random integers mutually different and different from
the running index i. Obviously, the mutation operator results in a real weight
vector. As our aim is to maintain an integer weight subpopulation at each
generation, each component of the mutant weight vector is rounded to the
nearest integer. Additionally, if the mutant vector is not in the hypercube
[−32, 32]N , we calculate ui

g+1 using the following formula:

ui
g+1 = sign(ui

g+1) ×
(
∣

∣ui
g+1

∣

∣ mod 32
)

, (3)

where sign is the well known three valued signum function. During recom-
bination, for each component j of the integer mutant vector, ui

g+1, a ran-
dom real number, r, in the interval [0, 1] is obtained and compared with the
crossover constant, CR. If r 6 CR we select as the j-th component of the
trial vector, vi

g+1, the corresponding component of the mutant vector, ui
g+1.

Otherwise, we choose the j-th component of the target vector, wi
g. It must be

noted that the result of this operation is also a 6-bit integer vector. Finally,
the trial individual is accepted for the next generation only if it reduces the
value of the objective function (selection operator).

Furthermore, the subpopulations are independently evolved in parallel
and occasionally migration is employed to allow cooperation between them
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through the migration operator (see Section 4.3 below). The DDE algorithm
is based of the asynchronous island model which is exhibited in Algorithm 1.
Additionally, for completeness purposes let us briefly present the EA step of
the island model in the case of DDE algorithm (Algorithm 2).

Algorithm 2 DE step in DDE algorithm

1: for Each individual wi
g in the subpopulation do

2: Evaluate the fitness, f(wi
g)

3: Create a trial vector ui
g+1 by applying a mutation operator

4: Round ui
g+1 to the nearest integer using Eq.(3)

5: Create an offspring, vi
g+1, by applying the crossover operator

6: if f(vi
g+1) < f(wi

g) then
7: wi

g+1 = vi
g+1

8: else
9: wi

g+1 = wi
g

10: end if
11: end for

4.2. The Distributed PSO algorithm

The Particle Swarm Optimization (PSO) algorithm is an Evolutionary
Computation technique, which belongs to the category of Swarm Intelli-
gence methods. It was introduced by Eberhart and Kennedy [40] in 1995.
PSO is inspired by the social behavior of bird flocking and fish schooling,
and is based on a social-psychological model of social influence and social
learning. The fundamental hypothesis to the development of PSO is that
an evolutionary advantage is gained through the social sharing of informa-
tion among members of the same species. Furthermore, the behavior of
the individuals of a flock corresponds to fundamental rules, such as nearest-
neighbor velocity matching and acceleration by distance [8, 41]. Like DE,
PSO is capable of handling non-differentiable, discontinuous and multimodal
objective functions and has shown great promise in several real-world appli-
cations [15, 17, 18].

To this end, PSO is a population–based stochastic algorithm that exploits
a population of individuals, to effectively probe promising regions of the
search space. Thus, each individual (particle) of the population (swarm)
moves with an adaptable velocity within the search space and retains in
its memory the best position it ever encountered. There are two variants
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of PSO, namely the global and the local. In the global variant, the best
position ever attained by all individuals of the swarm is communicated to
all the particles, while in the local variant, for each particle it is assigned a
neighborhood consisting of a pre-specified number of particles and the best
position ever attained by the particles in their neighborhood is communicated
among them [41].

More specifically, each particle is an D-dimensional vector, and the swarm
consists of NP particles. Thus, the position the i-th particle of the swarm
can be represented as: Xi = (xi1, xi2, . . . , xiD). The velocity of each parti-
cle is also an D-dimensional vector, and for the i-th particle is denoted as:
Vi = (ui1, ui2, . . . , uiD). The best previous position of the i-th particle can be
recorded as: Pi = (pi1, pi2, . . . , piD), and the best particle in the swarm, the
particle with the smallest fitness function value, is indicated by the index
g. Furthermore, the neighborhood of each particle is usually defined through
the particles’ indices. The most common topology is the ring topology, where
the neighborhood of each particle consists of particles with neighboring in-
dices [42].

Clerc and Kennedy [43], proposed a version of PSO which incorporates
a new parameter χ, known as the constriction factor. The main role of the
constriction factor is to control the magnitude of the velocities and alleviate
the “swarm explosion” effect that prevented the convergence of the original
PSO algorithm [44]. According to [43], the dynamic behavior of the particles
in the swarm is manipulated using the following equations:

Vi(t + 1) = χ(Vi(t) + c1r1(Pi(t) − Xi(t)) + c2r2(Pg(t) − Xi(t))), (4)

Xi(t + 1) = Xi(t) + Vi(t + 1), (5)

where i = 1, 2, . . . , N , c1 and c2 are positive constants referred to as cogni-

tive and social parameters respectively, and r1 and r2 are randomly chosen
numbers uniformly distributed in [0, 1]. The resulting position of the i-th
particle (Xi(t+1)) is a real weight vector. To this end, similarly to the DDE
implementation, we round Xi(t + 1) to the nearest integer and subsequently
utilize equation (3) to constrain it in the range [−32, 32].

In a stability analysis provided in [43] it was implied that the constriction
factor is typically calculated according to the formula:

χ =
2κ

|2 − φ −
√

φ2 − 4φ|
, (6)
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for φ > 4, where φ = c1 + c2, and k = 1.
Furthermore, as Differential Evolution algorithm, the Particle Swarm Op-

timization algorithm can be easily parallelized. The incorporation of PSO
into an island model is a straightforward procedure. Each island evolves
in parallel a sub-swarm of particles and occasionally migration is employed
to allow cooperation between them through the migration operator (Sec-
tion 4.3). Notice that, here the integer weights wi

g+1 are represented with
the Xi(t+1) notation, where t denotes the number of the current generation
and i represents the i-th particle of the sub-swarm. The DPSO algorithm is
based of the asynchronous island model which is exhibited in Algorithm 1.
Additionally, for completeness purposes let us briefly present the EA step of
the island model in the case of DPSO algorithm (Algorithm 3).

Algorithm 3 PSO step in DPSO algorithm

1: for Each particle X i
t in the sub-swarm do

2: Evaluate the fitness, f(X i
t)

3: Calculate the personal best position Pi(t), and the neighborhood best
position Pg(t) based on the local or global variant of the algorithm

4: end for
5: for Each particle X i

t in the sub-swarm do
6: Update the velocity of the particle X i

t using Eq.(4)
7: Update the position of the particle X i

t using Eq.(5)
8: end for

Next, we briefly describe the operator controlling the migration of the
best individuals.

4.3. The Migration Operator

The distributed versions of the DE and PSO algorithms have been em-
ployed according to the dEA paradigm. To this end, each processor is as-
signed a subpopulation of potential solutions. The subpopulations are in-
dependently evolved in parallel and occasional migration is employed to al-
low cooperation between them. The migration of the best individuals is
controlled by the migration constant ϕ. A good choice for the migration
constant is one that allows each subpopulation to evolve for some iterations
independently before the migration phase actually occur. There is a critical
migration constant value below which the DDE and DPSO performance is
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hindered by the isolation of the subpopulations, and above which the sub-
populations are able to locate solutions of the same quality as the panmictic
implementations. Detailed description of the DDE algorithm and experi-
mental results on difficult optimization problems can be found in [14, 22]. A
parallel implementation of the PSO algorithm can be found in [45]. Next,
we briefly describe the distributed PSO algorithm utilized in this study.

4.4. The Message Passing Interface

The Message Passing Interface (MPI) is a portable message-passing stan-
dard that facilitates the development of parallel applications and libraries.
MPI is the specification resulting from the MPI-Forum [46] which involved
several organizations designing a portable system which can allow programs
to work on a heterogeneous network. MPI implementations for executing
parallel applications run on both tightly-coupled massively-parallel machines
and on networks of distributed workstations with separate memory. With this
system, each executing process will communicate and share its data with oth-
ers by sending and receiving messages. The MPI functions support process-
to-process communication, group communication, setting up and managing
communication groups, and interacting with the environment. Thus, MPI
can be incorporated for dEA and/or cEA implementation.

A large number of MPI implementations are currently available, each
of which emphasizes different aspects of high-performance computing or is
intended to solve a specific research problem. In this paper the Open-
MPI implementation of the MPI standard has been utilized. OpenMPI is
open source, peer-reviewed, production-quality complete MPI implementa-
tion, which provides extremely high performance [47].

5. Experimental Results

In this study, the sequential, as well as the distributed versions of the
DE and PSO algorithms are applied to train PSNs with integer weights and
threshold activation functions. Here, we report results from the following
well known and widely used neural network training problems:

1. N -bit Parity check problems [48, 49],

2. the numeric font classification problem (NumFont) [50],

3. the MONK’s classification problems (MONK1, MONK2, and MONK3) [51],

4. the handwritten digits classification problem (PenDigits) [52], and
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5. the rock vs. mine sonar problem (Sonar) [53].

For all the training problems, we have used the fixed values of F = 0.5 and
CR = 0.7 as the DE mutation and crossover constants respectively. Similarly,
for the PSO algorithm, fixed values for the cognitive and social parameters
c1 = c2 = 2.05 have been used, and the constriction factor ξ = 0.729 has
been calculated using Eq. (6).

Regarding the number of hidden neurons, we tried to minimize the de-
grees of freedom of the PSN. Thus, the simpler network topology, which
is capable to solve each problem, has been chosen. Below we exhibit the
experimental results from the sequential and the distributed DE and PSO
implementations. For all the experiments reported below we utilize threshold
activation functions and 6-bit integer weights.

5.1. Sequential DE and PSO Implementation

Here, we exhibit experimental results from the sequential DE and PSO
algorithms. We call DE1 and DE2 the DE algorithms that use the mutation
operators defined in equations (1) and (2), respectively. We call PSO1 and
PSO2 the local and the global PSO variant, respectively. The neighborhood
of each particle had a radius of one. Specifically, the neighborhood of the
i-th particle contains the (i − 1)-th and the (i + 1)-th particles. Notice that
the software used in this section does not contain calls to the MPI library.
To this end, this implementation is marginally faster than the distributed
implementation executed in only one computer node.

The first set of experiments consists of the N -bit parity check problems.
These problems are well known and widely used benchmarks and are suitable
for testing the non-linear mapping and “memorization” capabilities of neural
networks. Although these problems are easily defined they are hard to solve,
because of their sensitivity to initial weights and their multitude of local
minima. Each N -bit problem has 2N patterns with N attributes in each
pattern. All patterns have been used for training and testing. For each
N -bit problem we have used an N degree Pi–Sigma network (resulting N

neurons in the middle layer). Here, we report results for N = 2, 3, 4, 5.
For each problem and each algorithm, we have used 10 individuals in each

population and have conducted 1000 independent simulations. The termina-
tion criterion applied to the learning algorithm was the mean square training
error (MSE) and it was different for each N -bit parity problem (0.05, 0.025,
0.125, and 0.125 respectively), following the experimental setup of [36]. No-
tice that the PSNs trained here have threshold activation functions.
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Table 1 shows the experimental results for the parity check problems. The
reported parameters for the simulations that have reached solution are: Min

the minimum number, Mean the mean value, Max the maximum number,
and St.D. the standard deviation of the number of training generations. All
trained networks gave perfect generalization capabilities for all problems.
The results of PSNs having threshold activation functions reported below
are equivalent or better than the results of PSNs trained using the classical
back-propagation algorithm [36]. An additional advantage of the proposed
approach is that no gradient information is required; no backward passes
were performed.

Generations
N Topology Algorithm Min Mean Max St.D.

2 2–2–1 DE1 1 1.70 5 1.36
2 2–2–1 DE2 1 5.04 12 4.92
2 2–2–1 PSO1 1 1.92 10 1.26
2 2–2–1 PSO2 1 2.07 13 1.71
3 3–3–1 DE1 1 13.93 50 10.16
3 3–3–1 DE2 1 17.98 77 13.95
3 3–3–1 PSO1 1 23.21 177 21.91
3 3–3–1 PSO2 1 29.06 281 35.28
4 4–4–1 DE1 1 9.09 47 8.29
4 4–4–1 DE2 1 9.66 34 8.55
4 4–4–1 PSO1 1 2.02 10 1.42
4 4–4–1 PSO2 1 2.20 17 1.74
5 5–5–1 DE1 1 36.14 100 21.21
5 5–5–1 DE2 1 35.98 100 21.76
5 5–5–1 PSO1 1 27.01 200 28.51
5 5–5–1 PSO2 1 28.53 210 29.74

Table 1: Simulation results for the N -bit parity check problem.

Below we report experimental results from the sequential DE and PSO
implementations on (a) the numeric font, (b) the MONK’s, (c) the handwrit-
ten digits and (d) the rock vs. mine sonar classification problems. To present
the generalization results the following notation is used in the following Ta-
bles: Min indicates the minimum generalization capability of the trained
PSNs; Max is the maximum generalization capability; Mean is the average
generalization capability; St.D. is the standard deviation of the generaliza-
tion capability. In all cases, average performance presented was validated
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using the well known test for statistical hypotheses, named t–test (see for
example [54]), using the SPSS 15 statistical software package.

It must be noted that PSNs trained for the MONK1, MONK2, MONK3,
and the Sonar training problems have only one output unit, since all the
samples of those datasets belong to one of the two available classes. On the
other hand, the networks trained for the NumFont and the PenDigits classi-
fication problems have ten output units (one for each digit). To implement a
PSN having multiple output units is equivalent to constructing PSNs having
common input units and different middle layer units (thus, different sets of
weights), each having one output unit. Thus, a PSN should be trained to
discriminate samples from each problem class.

5.1.1. The Numeric Font Classification Problem

For the numeric font classification problem the aim is to train a PSN to
recognize 8×8 pixel machine printed numerals from zero to nine in standard
helvetica font [50]. After being trained, the PSN was tested for its gener-
alization capability using helvetica italic font. Note that, the test patterns
in the italic font have 6 to 14 bits reversed from the training patterns. To
evaluate the average generalization performance the max rule was used.

For the NumFont problem we trained 10 distinct PSNs, each one having
16 input units and one output unit. Thus, one PSN for each digit has been
trained and we have conducted 1000 independent simulations for each net-
work. The termination criterion applied to the learning algorithm was either
a training error less than 0.001 or 1000 iterations. The experimental results
are presented in Table 2. All algorithms exhibited good generalization ca-
pabilities. DE1 in particular achieved 100% generalization success, followed
closely by PSO2. This indicates that the global variants exhibited better
results for this problem.

Network Mutation Generalization (%)
Topology Strategy Min Mean Max St.D.

64–1–1 DE1 80 99.4 100 2.50
64–1–1 DE2 100 100 100 0.00
64–1–1 PSO1 80 95.9 100 5.70
64–1–1 PSO2 90 99.8 100 1.21

Table 2: Generalization results for the NumFont problem.
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5.1.2. The MONK’s Classification Problems

The MONK’s classification problems are three binary classification tasks,
which have been used for comparing the generalization performance of learn-
ing algorithms [51]. These problems rely on the artificial robot domain, in
which robots are described by six different attributes. Each one of the six at-
tributes can have one of 3, 3, 2, 3, 4, and 2 values, respectively, which results
432 possible combinations that constitute the total data set (see [51], for
details). Each possible value for every attribute is assigned a single bipolar
input, resulting 17 inputs.

For the MONK’s problems we have tested PSNs having two units in the
middle layer (i.e. 17–2–1 PSN architecture). Table 3 illustrates the average
generalization results (1000 runs were performed). The termination criterion
applied to the learning algorithm was either a training error less than 0.01 or
5000 iterations. Once again the DE and PSO trained PSNs exhibited high
classification success rates, while the training procedure was very fast and
robust. Notice that it has been theoretically proved that PSNs are capable to
learn perfectly any Boolean Conjunctive Normal Form (CNF) expression [37]
and that the MONK’s problems can be described in CNF.

Generalization (%)
Problem Topology Algorithm Min Mean Max St.D.

MONK1 17–2–1 DE2 86 96.68 100 2.43
MONK1 17–2–1 DE2 86 96.74 100 2.38
MONK1 17–2–1 PSO1 80 95.16 100 3.30
MONK1 17–2–1 PSO2 83 96.02 100 2.66
MONK2 17–2–1 DE2 79 97.36 100 2.38
MONK2 17–2–1 DE2 91 97.66 100 1.45
MONK2 17–2–1 PSO1 90 96.86 100 1.69
MONK2 17–2–1 PSO2 91 97.31 100 1.64
MONK3 17–2–1 DE2 82 91.57 97 2.37
MONK3 17–2–1 DE2 81 90.77 97 3.10
MONK3 17–2–1 PSO1 80 92.02 99 2.97
MONK3 17–2–1 PSO2 81 93.14 99 2.46

Table 3: Generalization results for the MONK’s Problems

5.1.3. The Handwritten Digits Classification Problem

The PenDigits problem is part of the UCI Repository of Machine Learn-
ing Databases [52] and is characterized by a real–valued training set of ap-

17



proximately 7500 patterns. In this experiment, a digit database has been
assembled by collecting 250 samples from 44 independent writers. The sam-
ples written by 30 writers are used for training, and the rest are used for
testing. The training set consists of 7494 real valued samples and the test
set of 3498 samples.

For the PenDigits problem we trained 10 different PSNs, one PSN for
each digit. We have conducted 100 independent simulations for each network
and the termination criterion applied to the learning algorithm was either
a training error less than 0.001 or 1000 iterations. Table 4 exhibits the
average generalization results. The average classification accuracy of the
trained PSNs for the PenDigits problem is about 85% for all algorithms.
The average classification accuracy of the trained PSNs for the PenDigits

Network Mutation Generalization (%)
Topology Strategy Min Mean Max St.D.

16–2–1 DE1 83.91 86.20 88.74 1.08
16–2–1 DE2 81.53 84.60 87.71 1.16
16–2–1 PSO1 82.38 84.76 87.19 1.20
16–2–1 PSO2 82.59 85.16 87.70 1.17

Table 4: Generalization results for the PenDigits Problem.

problem is about 85% for all algorithms.

5.1.4. The Sonar Problem

For the Sonar problem the task is to train a PSN to discriminate between
sonar signals bounced off a metal cylinder (mine) and those bounced off a
roughly cylindrical rock. In this experiment the dataset contains 208 sam-
ples obtained by bouncing sonar signals off a metal cylinder and a rock at
various angles and under various conditions [53]. There exist 111 samples
obtained from mines and 97 samples obtained from rocks. Each pattern con-
sists of 60 real numbers in the range [0.0, 1.0]. Each number represents the
energy within a particular frequency band, integrated over a certain period
of time. The trained PSNs have one unit in the middle layer (i.e. 60–1–1
PSN architecture).

The classification accuracy of the trained PSNs is exhibited in Table 5.
The average classification accuracy obtained by the EA trained PSNs is com-
parable to the classification accuracy of FNNs.
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Network Mutation Generalization (%)
Topology Strategy Min Mean Max St.D.

60–1–1 DE1 58 73.81 87 4.24
60–1–1 DE2 57 73.35 87 4.34
60–1–1 PSO2 64 73.89 85 3.92
60–1–1 PSO1 61 74.44 90 3.85

Table 5: Generalization results for the Sonar problem.

5.2. Distributed DE and PSO Implementations

In this section the DDE and the DPSO algorithms are applied to train
PSNs with integer weights and threshold activation functions. Here, we
report results on the MONK’s [51] as well as on the Sonar [53] benchmark
problems.

For this set of experiments, we have conducted 1000 independent sim-
ulations for each algorithm, using a distributed computation environment
consisting of 1, 2, 4, 6, and 8 nodes. For the DDE and DPSO algorithms, we
have used the same values for the algorithms’ parameters. The migration
constant was ϕ = 0.1. The termination criterion applied to the learning
algorithm was either a training error less than 0.01 or 5000 iterations.

As for the choice of the communication topology, islands with many neigh-
bors are more effective than sparsely connected ones. However, this brings
forth a tradeoff between computation and communication cost. Optimal
choice of the degree of the topology that minimizes the total cost is difficult.
For the DDE and the DPSO implementation we have used the ring topology
(each node communicates only with the next node on a ring).

In the distributed implementation, each processor evolves a subpopulation
of potential solutions. To allow cooperation between the subpopulations,
migration is employed. When a higher number of CPUs is utilized (i.e. higher
number of subpopulations) the average generalization accuracy is slightly
improved. This is probably due to the island model for the migration of the
best individuals [14, 22].

The experimental generalization results of problems MONK1 and MONK2
are exhibited in Table 6, while the results of problems MONK3 and SONAR
are presented in Table 7. Overall, the results indicate that the training
of PSNs with integer weights and thresholds, using the modified DDE and
DPSO algorithms are efficient and promising. The learning process was ro-
bust, fast and reliable, and the performance of the distributed algorithms
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Computer Mutation MONK1 Generalization (%) MONK2 Generalization (%)

Nodes Strategyi Min Mean Max St.D. Min Mean Max St.D.

1 DDE1 90 97.26 100 2.18 93 98.00 100 1.42
1 DDE2 89 97.44 100 2.06 94 98.12 100 1.39
1 DPSO1 85 96.16 100 2.54 91 97.14 100 1.62
1 DPSO2 91 97.59 100 1.71 93 98.19 100 1.23
2 DDE1 90 97.81 100 2.18 94 97.88 100 1.36
2 DDE2 89 97.84 100 1.73 93 97.74 100 1.56
2 DPSO1 88 96.75 100 2.47 93 97.59 100 1.50
2 DPSO2 90 97.59 100 1.92 96 98.35 100 1.19
4 DDE1 93 98.13 100 1.79 93 98.12 100 1.14
4 DDE2 91 97.90 100 1.93 93 98.00 100 1.46
4 DPSO1 93 97.27 100 1.88 93 97.90 100 1.46
4 DPSO2 93 97.87 100 1.49 95 98.21 100 1.12
6 DDE1 91 97.86 100 1.91 94 98.12 100 1.25
6 DDE2 92 97.73 100 1.85 94 97.79 100 1.28
6 DPSO1 92 96.78 100 1.69 93 97.61 100 1.49
6 DPSO2 92 97.80 100 1.68 95 98.18 100 1.22
8 DDE1 92 98.22 100 1.59 95 97.96 100 1.33
8 DDE2 93 97.77 100 1.59 95 98.24 100 1.15
8 DPSO1 90 97.05 100 2.03 92 97.48 100 1.71
8 DPSO2 94 97.91 100 1.26 95 98.19 100 1.08

Table 6: Generalization results for the MONK1 and MONK2 benchmark problems

stable. Additionally, the trained PSNs utilizing DDE and DPSO exhibited
good generalization capabilities.

The four methods considered here, exhibit similar performance. To bet-
ter compare them, we have performed ANOVA tests and post hoc analysis
(Tukey). For the 8 computer node case, the statistical results indicate that
in the MONK problems the four methods exhibit different behavior, while
they are equivalent in the SONAR problem. More specifically, in the MONK1
problem the two PSO variants are equivalent, while in the MONK2 the global
methods (i.e. DDE2 and DPSO2) are equivalent.

In addition to the generalization accuracy test, we have also compared
the four methods by means of the time needed to train the PSNs.
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Computer Mutation MONK3 Generalization (%) SONAR Generalization (%)

Nodes Strategy Min Mean Max St.D. Min Mean Max St.D.

1 DDE1 83 92.69 97 2.19 61 76.62 88 5.87
1 DDE2 81 91.06 97 2.98 60 76.49 90 6.08
1 DPSO1 84 92.16 97 2.79 62 76.37 91 5.81
1 DPSO2 86 92.90 98 2.42 60 77.16 90 5.46
2 DDE1 87 92.49 97 2.14 54 76.22 90 5.87
2 DDE2 82 90.99 96 2.62 62 76.40 90 5.63
2 DPSO1 82 91.55 96 2.61 64 76.97 88 5.25
2 DPSO2 83 91.99 98 3.04 62 77.55 90 5.82
4 DDE1 83 92.37 97 2.47 61 75.90 90 6.23
4 DDE2 82 90.40 97 3.14 64 76.05 88 5.32
4 DPSO1 83 90.91 97 3.00 58 76.77 91 6.42
4 DPSO2 85 92.80 98 2.48 62 76.90 88 5.54
6 DDE1 84 92.71 96 2.11 58 76.59 87 5.92
6 DDE2 83 90.45 96 3.22 58 75.89 87 6.20
6 DPSO1 84 91.27 96 2.85 58 76.47 90 6.04
6 DPSO2 82 91.67 98 3.33 61 75.48 90 5.66
8 DDE1 85 92.34 96 1.93 61 76.53 87 5.60
8 DDE2 82 90.64 95 2.66 60 76.06 91 5.83
8 DPSO1 84 90.94 96 2.79 61 77.00 90 5.83
8 DPSO2 80 92.51 97 2.67 60 77.16 90 6.26

Table 7: Generalization results for the MONK3 and SONAR benchmark problems

5.2.1. Distributed DE and PSO Times and Speedup Measurements

To better understand the efficiency of the proposed methods we have
measured the time needed to converge to a solution. Figure 2 illustrates
average elapsed wall-clock times. For every experiment, the MPI timer (MPI
Wtime) was used. This procedure is a high-resolution timer, which calculates
the elapsed wall-clock time between two successive function calls. From the
results, it is evident that the DDE algorithms are faster and trained the
PSNs efficiently. Among the DDE algorithms DDE1 is marginally better,
while DPSO1 and DPSO2 seem equivalent.

Notice that DDE1 mutation operator uses the best individual of the cur-
rent generation for computation the mutant vector. On the other hand,
DDE2 computes the mutant vector from randomly chosen individuals. To
this end, DDE1 converges faster to a single minimum, while DDE2 better
explores the search space. Similarly, DPSO1 is the local version of PSO,
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while DPSO2 is the global version. Thus, to train a HONN for a new appli-
cation, where the balance between exploration and exploitation is unknown,
both local and global algorithms can be tried. Furthermore, one can start
the training process using the DDE2 or the DPSO2 for better exploration
and consequently switch to DDE1 or DPSO1 for faster convergence [23]. If
only one algorithm must be utilized, in the case of an unknown problem, we
recommend the use of the DDE1 algorithm.
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Figure 2: Average elapsed wall-clock times for training PSNs by DDE1, DDE2, DPSO1

and DPSO2, for the MONK’s and the Sonar problems

In addition to time measurements, we also calculated the speedup achieved
by assigning each subpopulation to a different processor relative to assign-

22



ing all subpopulations to a single processor. The speedup is illustrated in
Figure 3. In the literature various speedup measurement methods have been
proposed. However, to perform fair comparison between the sequential and
the parallel (or distributed) code, several conditions must be met [32, 55]:

1. average and not absolute times must be used,
2. the uni- and multi-processor implementations should be exactly the

same, and
3. the parallel (or distributed) code must be run until a solution for the

problem is found.

To obtain the plotted values, we conducted 1000 independent simulations
for 1, 2, 4, 6, 8 computer nodes and the average speedup is shown. For every
simulation the training error goal was met and the migration constant was
equal to 0.1.

Several factors can influence the speedup, such as the local area network
load and the CPU load due to system or other users’ tasks [32, 56, 57]. Nev-
ertheless, the speedup results indicate that the combined processing power
overbalances the overhead due to process communication and speedup is
achievable. It must be noted that the DDE1 and DPSO2 generally exhibit
higher speedup results, with DDE1 being the best parallelized algorithm.
Overall, the best speedup was achieved by DDE1 on the MONK3 problem,
when 8 computer nodes were utilized (approximately 3.2 times faster than
the simulation utilizing one computer node). Once again the use of DDE1 is
recommended for large distributed systems.

6. Concluding Remarks

In this paper, we study a special class of Higher-Order Neural Networks,
the Pi–Sigma Networks and propose the use of sequential as well as parallel
(or distributed) Evolutionary Algorithms for their training. The incorpo-
ration of global optimization methods (such as Evolutionary Algorithms)
instead of classical local optimization methods is strongly recommended.
Global optimization methods incorporate efficient and effective searching
mechanisms that avoid the convergence to local minima and thus enhance
the neural network training procedure, as well as the classification accuracy
of the trained networks. Additionally, EAs’ capabilities of handling discrete,
non-differentiable, discontinuous and multimodal objective functions, pro-
vide the ability to apply them for training “hardware–friendly” PSNs, i.e.
PSNs with threshold activation functions and small integer weights.
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Figure 3: Speedup of training PSNs by DDE1, DDE2, DPSO1 and DPSO2, for the
MONK’s and the Sonar problems

For the proposed distributed versions of Differential Evolution and Parti-
cle Swarm Optimization algorithms each processor of a distributed computing
environment is assigned a subpopulation of potential solutions. The subpop-
ulations are independently evolved in parallel and occasional migration of
the best individuals is employed to allow subpopulation cooperation. Such
parallel or distributed EAs implementations enhances the training process
of the Pi–Sigma Networks, due to the parallel search of the solution space,
while they speedup the training process due to the usage of multiple CPUs.

The performance of the trained networks is evaluated through well known
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neural network training problems and the experimental results suggest that
the proposed training approach using distributed Evolutionary Algorithms is
robust, reliable, and efficient. By assigning each subpopulation to a different
processor significant training speedup was achieved (approximately 3.2 times
faster than the sequential implementation). The trained networks were able
to effectively address several difficult classification tasks. Moreover, the EA
trained PSNs exhibited good generalization capabilities, comparable with
the best generalization capability of PSNs trained using other well–known
batch training algorithms, such as the BP and the RProp [58]. Among the
EA algorithms studied, the local variant of the DE algorithm (DDE1) was
clearly the fastest one. Thus, the use of DDE1, in an unknown optimization
task, is recommended.

Finally, it has to be noted that the incorporation of either small integer
weights or threshold activation functions did not hindered the performance
and the generalization capabilities of the Pi-Sigma Networks. Furthermore,
in a future communication we intend to rigorously compare the classifica-
tion capability of PSNs with other soft computing approaches, as well to
tackle real-world problems with smaller integer range weights. Additionally,
we will give experimental results of PSNs trained using hierarchical parallel
Evolutionary Algorithms.
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