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Abstract—A new family of Differential Evolution mutation
strategies (DE/nrand) that are able to handle multimodal func-
tions, have been recently proposed. The DE/nrand family in-
corporates information regarding the real nearest neighborhood
of each potential solution, which aids them to accurately locate
and maintain many global optimizers simultaneously, without the
need of additional parameters. However, these strategies have
increased computational cost. To alleviate this problem, instead
of computing the real nearest neighbor, we incorporate an index-
based neighborhood into the mutation strategies. The new muta-
tion strategies are evaluated on eight well-known and widely used
multimodal problems and their performance is compared against
five state-of-the-art algorithms. Simulation results suggest that
the proposed strategies are promising and exhibit competitive
behavior, since with a substantial lower computational cost they
are able to locate and maintain many global optima throughout
the evolution process.

I. INTRODUCTION

Handling multimodal functions is a very important and chal-

lenging task in evolutionary computation community, since

most hard real-world problems exhibit highly multimodal

landscapes. They are likely to have several global and/or

local minima, and in many cases it is desirable to accurately

locate as many as possible. To this end, several Evolutionary

Algorithms (EAs) have been recently extended to handle such

landscapes through the concept of the niche formation. Niche

formation is a common biological phenomenon [1]. A niche

can be defined as a subspace in the environment that can

support different types of life. In general, niches indirectly

impose reproduction restrictions to aid the differentiation of

the species and thus maintain their diversity. Many natural

environments can lead to niche formation, such as remote

islands, high mountains and isolated valleys. Many well-

known EAs have been developed, to mimic the biological

niche formation and take advantage of its characteristics. The-

ses methodologies are characterized as Niching methods [1].

Niching methods tend to maintain the diversity within their

population and allow a parallel convergence into multiple

solutions. Various niching techniques have been proposed and

successfully applied to different EAs, such as, crowding [2],

[3], fitness sharing [3], [4], clearing [5], specialized evolution

operators [6], clustering [7], stretching and deflation [8], [9],

parallelization [10], restricted tournament selection [11], [12],

and speciation [13].

In the paper at hand, we consider the Differential Evolu-

tion (DE) algorithm which has been proposed by Storn and

Price [14]. DE has been successfully applied in a plethora of

optimization problems [14]–[17]. In this work, the objective

is to locate as many global optimizers of a multimodal

function as possible. The DE literature includes several dif-

ferent variants that incorporate the aforementioned niching

techniques and attempt to handle multimodal landscapes. In

particular, Thomsen extends DE with both a crowding and a

fitness sharing technique, namely Crowding DE (CDE) and

Sharing DE [18], and shows that the CDE variant is a more

promising approach, since outperforms the Sharing DE in all

tested problems [18]. In turn, Species-based DE (SDE) [19],

[20] incorporates the speciation concept to handle multimodal

functions. SDE locates multiple global optima simultaneously

through the adaptive formation of multiple species, which are

evolved through DE. Although SDE is computationally more

efficient than the Crowding DE, it incorporates a user-specified

and problem dependent parameter called species radius, which

should be properly chosen.

Additionally, DE using local selection (DELS) [21] employs

a new mutation strategy that divides the mutation operation

into the local and the global mutation stages. It selects a

different mutation strategy, with a pre-specified probability,

to perform either a global or a local mutation. The global

mutation enhance the exploratory ability of the algorithm,

while the local mutation its exploitative behavior. DELS has

been further hybridized with a multi-start gradient-based local

search, as well as with the crowding technique [22]. In turn,

Zaharie proposed a parallel approach that utilizes an “island

model” approach to locate in parallel many global optima [10],

while in [12] a DE extension with an ensemble of the restricted

tournament selection (ERTS-DE) has been proposed. Finally,

several other EAs have been proposed, which attempt to handle

multimodal landscapes [9], [23]–[26].

Recently, we have introduced a new family of mutation

strategies that are able to efficiently handle multimodal func-

tions, namely the DE/nrand family [6]. The DE/nrand family

incorporates information regarding the real nearest neighbor-

hood of each potential solution, which aids them to accurately

locate and maintain many global optimizers, without the

need of additional parameters. Nevertheless, the calculation

of the distances between the individuals demands a high



computational cost. To alleviate this problem, we incorporate

an index-based neighborhood into the mutation strategies. To

this end, we manage to reduce the computational cost of the

mutation strategies and still be able to efficiently locate and

maintain multiple global optima of a multimodal function.

Here, we incorporate two index-based neighborhoods; a two

side ring and a Von Neumann neighborhood [27], [28]. The

new mutation strategies are evaluated on eight well-known and

widely used multimodal problems and their performance is

compared against five state-of-the-art algorithms. Simulation

results suggest that the proposed strategies are promising and

exhibit competitive behavior.

The rest of the paper is structured as follows: Section II

briefly describes the motivation behind the development of

the proposed mutation strategies. A brief description of the

new mutation strategies are presented in Section III. Next, the

outcomes of an extensive experimental analysis are presented

in Section IV. Finally the paper concludes in Section V with

a discussion and some pointers for future work.

II. MOTIVATION

In a recent work [6], we have exploited Differential Evolu-

tion’s tendency to distribute the individuals of its population

in the vicinity of the considered problem’s minima [7], [17],

and introduced a family of mutation strategies that produce

a niching effect. This family of mutation strategies take

advantage of the nearest neighbor interactions between the

individuals of a population and by a simple modification can

accurately locate and maintain many global minima, through

the evolution stages of the algorithm.

Although, to produce stable niches through the evolution

process, the aforementioned family incorporates into the mu-

tation strategies the nearest neighbor of each individual. This

information can be characterized as a global information,

since it incorporates information calculated from the entire

population and demands a high computational cost. One way

to calculate the nearest neighbor interactions is to employ

properly computational geometry methods to efficiently reduce

the computational complexity of this procedure [29]. Nev-

ertheless, its incorporation in an algorithm is not a straight

forward procedure, since it demands great knowledge of

computational geometry concepts and methodologies, as well

as great programming skills.

Recently, it has been demonstrated that the simple Particle

Swarm Optimization (PSO) algorithm with an index-based

ring topology is able to induce stable niching behaviors [25].

The produced niching effect is based on PSO’s ability to

posses a local memory into its population (swarm). The main

role of the index-based ring topology was to provide a mecha-

nism to slow down information propagation in the population,

as well as to allow different neighboring individuals to coexist

through time. Furthermore, index-based neighborhoods are

easily implemented without employing an additional overhead

into the considered algorithm.

Motivated by these findings, we also incorporate an index-

based neighborhood. To this end, we reduce the computational

cost of the mutation strategies and still are able to efficiently

locate and maintain multiple global optima of a multimodal

function.

III. DIFFERENTIAL EVOLUTION MUTATION STRATEGIES

WITH INDEX-BASED NEIGHBORHOODS

The DE algorithm [14] is a stochastic parallel direct search

method, which implements concepts borrowed from the broad

class of Evolutionary Algorithms (EAs). In detail, DE is a

population–based stochastic algorithm that takes advantage of

a population of NP potential solutions, individuals, to effec-

tively probe the search space. In the first stage of evolution, DE

randomly initializes the population in the D–dimensional op-

timization domain through a uniform probability distribution.

Individuals evolve over consecutive iterations to explore the

search space and locate the optima of the objective function.

At each iteration, called generation, new vectors are created

by the combination of a base vector and some randomly

chosen vectors from the current population. This operation

in our context can be referred to as mutation, while the out-

coming vectors as mutant individuals. The selection of the base

vector depends on the mutation operator. In turn, each mutant

individual is then mixed with another vector – the target vector

– through an operation called recombination or crossover.

This operation yields the so–called trial vector. Finally, the

trial vector undergoes the selection operation, according to

which it is accepted as a member of the population of the

next generation only if it yields a reduction in the value of

the objective function f relative to that of the target vector.

Otherwise, target vector is retained in the next generation. DE

operators efficiently shuffle information among the individuals,

enabling the search procedure to focus on the most promising

regions of the optimization space. A more comprehensive

description of the DE can be found in [14]–[17].

The recently proposed DE/nrand family is capable of han-

dling multimodal landscapes by taking advantage from the

dynamics of the classic DE’s mutation strategies and the

local information of the current population [6]. To evolve

each individual it employs into the mutation schemes as

a base vector its real nearest neighbor individual. Thus, a

niching effect is produced by maintaining the individuals to the

vicinity of the problem’s optima, while they simultaneously

explore the search space. The computational complexity of

the DE/nrand family is determined by the computational

burden of the nearest neighbor computations. In the worst

case, the DE/nrand strategies exhibit quadratic complexity

in the population size, O(NP 2), at each generation, since

they have to calculate the nearest neighbors of the whole

population. A naive implementation of this procedure may cost

the calculation of the population’s affinity matrix, i.e. NP 2

Euclidean distances.

In this work, we propose not to compute the real nearest

neighbors; instead we propose to find the real nearest neigh-

bor of each individual in an index–based neighborhood. To

this end, we employ an index–based neighborhood into the

population and act as the neighborhood of each individual is



the index neighborhood based on a predefined topology, e.g. a

ring, a star, a Von Neumann, etc. As such, for each individual

xi
g, i = 1, 2, . . . , NP , where g denotes the current generation,

the mutant individual vig+1 can be generated according to one

of the following proposed equations:

1) “DE/inrand/1”

vig+1 = xINNi

g + F (xr1
g − xr2

g ), (1)

2) “DE/inrand/2”

vig+1 = xINNi

g + F (xr1
g − xr2

g ) + F (xr3
g − xr4

g ), (2)

where F > 0 is a real parameter, called mutation or scaling

factor, xINNi

g is the nearest neighbor of the index–based

neighborhood of the current individual xi
g, and r1, r2, r3, r4 ∈

{1, 2, . . . , NP} \ {i} are random integers mutually different

and not equal to the running index i. The remaining DE steps

are the same as the classic DE/rand/1/bin scheme [14], i.e. we

employ the binomial crossover operator and the simple elitist

selection operator.

Here, we incorporate two index-based neighborhoods, a

ring (R) and a Von Neumann (V) neighborhood [27],

[28]. Thus, the mutation strategies are named DE/inrand/1R,

DE/inrand/2R for the ring neighborhood and DE/inrand/1V,

DE/inrand/2V for the Von Neumann. To this end, its com-

plexity decreases radically to the calculation of nn ≪ NP
distances for each individual, where nn is the number of

the neighbors in the index-based neighborhood. Obviously,

as the number of index neighbors increase, the complexity

of the corresponding mutation strategy increases. We expect

that the newly developed mutation strategies will have more

exploratory characteristics, due to the randomness of the

index–based neighborhood, while still posses the ability to

locate and maintain the discovered global optima throughout

the evolutionary process, due to the real nearest neighbor

interactions in the index–based neighborhood.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed approaches by

comparing them with several Differential Evolution variants

that handle multimodal optimization problems. To verify the

effectiveness of the proposed approaches, we employ eight

classic multimodal benchmark functions with different charac-

teristics, such as multiple evenly and unevenly spaced global

optima, multiple global optima in the presence of multiple

local optima and deceptiveness [22]. A thorough description of

the benchmark functions along with their main characteristics

can be found in [6], [22].

To demonstrate the efficiency of the proposed approaches,

we compare them against five methods that can handle multi-

modal landscapes, i.e. the two recently proposed DE/nrand/1

and DE/nrand/2 algorithms and three state-of-the-art Differ-

ential Evolution variants, namely the Crowding DE [18], the

DELS [21] and the Species-based DE (Species DE) [19], [20].

Throughout this section, all the reported results are averaged

over 100 independent simulations. For each simulation and

each algorithm we have initialized the populations using a

uniform random number distribution with the same random

seeds. Moreover, all methods have been implemented with

the default parameters settings, as have been proposed in the

literature. Regarding the DE control parameters, the common

settings of F = 0.5 and CR = 0.9 were used for all DE

variants [15]–[17]. For each simulation, we have incorporated

fixed size populations with NP = 100 individuals and a budget

of maxNFEs = 105 function evaluations.

To verify the effectiveness and the ability of the proposed

approaches to accurately locate the global minima, we first

specify a level of accuracy, ε ∈ (0, 1]. The level of accuracy

parameter depicts the tolerance level of a computed solution to

be considered as a global optimum. In detail, if the Euclidean

distance of a computed solution to a known global optimum

is less than the pre-specified level of accuracy ε, then the

solution is considered to be a global optimum. Moreover, since

in the current benchmark functions the number as well as

the location of optima to be found is known a priori, we

can use it as a performance metric. Therefore, based on the

aforementioned metric, to compare the performance of the

implemented algorithms, we adopt the peak ratio and the

success rate measures [18]. In detail, for a pre-specified budget

of function evaluations (maxNFEs) and an accuracy level ε,

the peak ratio (PR) measures the percentage of global optima

(i.e. peaks) located over the total number of known global

optima. Therefore, for a single simulation the peak ratio can

be defined as: PR = (#PF)/(#PT), where #PF is the number

of founded peaks while #PT determines the number of total

peaks. Notice that the reported PR values are average values

over 100 independent simulations. In turn, the success rate

(SR) measures the percentage of simulations in which all

global optima have been successfully located.

In the experiment, we try to find out if the considered algo-

rithms can accurately locate the global minima in different lev-

els of accuracy. Hence, we consider seven different accuracy

levels, namely ε ∈ {10−3, 10−4, . . . , 10−9}. This task turns to

be very challenging, since when the accuracy level increases

the accuracy of the computed global minima increases. It is

expected that, as the accuracy levels increase, both the SR

and the PR measures vary with respect to different levels of

accuracy, while the algorithms tend to produce smaller values

of both peak ratio and success rates as the accuracy levels

increase. Table I demonstrates extensive experimental results

of all algorithms over the considered benchmark suite.

In detail, Species-based DE exhibits poor performance in

three of the four most challenging functions on this bench-

mark set (e.g. functions f3, f6, and f7) with the considered

parameter settings. In the remaining functions although it can

successfully locate the desired number of minima in the first

four accuracy levels, in the remaining levels (1.0e-06 – 1.0e-

09) performs poorly. Species DE performs well only in the

f8 function. We speculate that Species DE needs a higher

population size to accurately locate all global minima on the

given budget of function evaluations (see also Section IV-C,

where we study the effect of the population size on the

algorithms). Crowding DE is one of the most promising



TABLE I
SUCCESS RATIO AND PEAK RATIO MEASURES FOR THE MULTIMODAL FUNCTIONS f1–f8

Function f1 Crowding DE DELS Species DE DE/nrand/1 DE/nrand/2 DE/inrand/1R DE/inrand/2R DE/inrand/1V DE/inrand/2V

Acc. level ε SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 0.983 0.940 0.980 0.910 0.970 0.840 0.947

1.0e-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.997 0.900 0.967 0.920 0.973 0.930 0.977 0.850 0.950

1.0e-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 0.983 0.920 0.973 0.870 0.957 0.880 0.960

1.0e-06 0.910 0.970 1.000 1.000 0.860 0.953 1.000 1.000 1.000 1.000 0.940 0.980 0.970 0.990 0.910 0.970 0.840 0.947

1.0e-07 0.110 0.400 1.000 1.000 0.210 0.587 1.000 1.000 0.990 0.997 0.940 0.980 0.910 0.970 0.910 0.970 0.890 0.963

1.0e-08 0.000 0.077 1.000 1.000 0.010 0.193 1.000 1.000 0.990 0.997 0.940 0.980 0.910 0.970 0.880 0.960 0.840 0.947

1.0e-09 0.000 0.003 1.000 1.000 0.000 0.040 1.000 1.000 1.000 1.000 0.960 0.987 0.910 0.970 0.840 0.947 0.800 0.933

Function f2 Crowding DE DELS Species DE DE/nrand/1 DE/nrand/2 DE/inrand/1R DE/inrand/2R DE/inrand/1V DE/inrand/2V

Acc. level ε SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.995

1.0e-04 1.000 1.000 1.000 1.000 0.960 0.990 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.995 0.990 0.998 0.980 0.995

1.0e-05 1.000 1.000 1.000 1.000 0.410 0.835 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.998 1.000 1.000 0.950 0.988

1.0e-06 1.000 1.000 1.000 1.000 0.030 0.482 1.000 1.000 1.000 1.000 1.000 1.000 0.960 0.990 0.990 0.998 0.950 0.988

1.0e-07 0.920 0.980 1.000 1.000 0.000 0.132 1.000 1.000 1.000 1.000 1.000 1.000 0.930 0.983 1.000 1.000 0.890 0.973

1.0e-08 0.170 0.558 1.000 1.000 0.000 0.050 1.000 1.000 1.000 1.000 1.000 1.000 0.930 0.980 0.990 0.998 0.900 0.975

1.0e-09 0.000 0.050 1.000 1.000 0.000 0.005 1.000 1.000 1.000 1.000 0.990 0.998 0.910 0.975 0.960 0.990 0.800 0.945

Function f3 Crowding DE DELS Species DE DE/nrand/1 DE/nrand/2 DE/inrand/1R DE/inrand/2R DE/inrand/1V DE/inrand/2V

Acc. level ε SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.000 0.066 0.050 0.779 0.000 0.398 0.000 0.723 0.940 0.996 0.280 0.877 0.750 0.984 0.030 0.636 0.690 0.980

1.0e-04 0.000 0.006 0.000 0.186 0.000 0.104 0.010 0.741 0.880 0.993 0.340 0.896 0.690 0.976 0.000 0.607 0.680 0.980

1.0e-05 0.000 0.000 0.000 0.017 0.000 0.018 0.000 0.726 0.940 0.997 0.280 0.865 0.720 0.983 0.020 0.622 0.640 0.971

1.0e-06 0.000 0.001 0.000 0.004 0.000 0.004 0.000 0.726 0.980 0.999 0.130 0.842 0.740 0.984 0.010 0.601 0.590 0.963

1.0e-07 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.726 0.970 0.998 0.240 0.870 0.730 0.983 0.010 0.617 0.690 0.973

1.0e-08 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.724 1.000 1.000 0.310 0.872 0.520 0.958 0.010 0.592 0.720 0.981

1.0e-09 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.724 0.910 0.995 0.270 0.873 0.260 0.841 0.000 0.614 0.610 0.962

Function f4 Crowding DE DELS Species DE DE/nrand/1 DE/nrand/2 DE/inrand/1R DE/inrand/2R DE/inrand/1V DE/inrand/2V

Acc. level ε SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0e-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0e-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0e-06 1.000 1.000 1.000 1.000 0.980 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0e-07 1.000 1.000 1.000 1.000 0.620 0.790 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0e-08 1.000 1.000 1.000 1.000 0.140 0.385 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0e-09 1.000 1.000 1.000 1.000 0.000 0.125 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Function f5 Crowding DE DELS Species DE DE/nrand/1 DE/nrand/2 DE/inrand/1R DE/inrand/2R DE/inrand/1V DE/inrand/2V

Acc. level ε SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.000 0.723 0.000 0.513 0.000 0.372 0.000 0.398 0.000 0.393 0.000 0.362 0.000 0.303 0.000 0.337 0.000 0.273

1.0e-04 0.000 0.715 0.000 0.495 0.000 0.364 0.000 0.393 0.000 0.387 0.000 0.351 0.000 0.311 0.000 0.338 0.000 0.286

1.0e-05 0.000 0.609 0.000 0.475 0.000 0.340 0.000 0.387 0.000 0.383 0.000 0.349 0.000 0.300 0.000 0.328 0.000 0.279

1.0e-06 0.000 0.352 0.000 0.445 0.000 0.193 0.000 0.378 0.000 0.351 0.000 0.340 0.000 0.289 0.000 0.336 0.000 0.276

1.0e-07 0.000 0.126 0.000 0.406 0.000 0.057 0.000 0.366 0.000 0.291 0.000 0.335 0.000 0.273 0.000 0.317 0.000 0.258

1.0e-08 0.000 0.021 0.000 0.363 0.000 0.012 0.000 0.352 0.000 0.201 0.000 0.324 0.000 0.248 0.000 0.306 0.000 0.241

1.0e-09 0.000 0.004 0.000 0.282 0.000 0.001 0.000 0.340 0.000 0.095 0.000 0.322 0.000 0.205 0.000 0.298 0.000 0.211

Function f6 Crowding DE DELS Species DE DE/nrand/1 DE/nrand/2 DE/inrand/1R DE/inrand/2R DE/inrand/1V DE/inrand/2V

Acc. level ε SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 1.000 1.000 0.620 0.982 0.000 0.527 0.640 0.982 0.670 0.984 0.280 0.950 0.430 0.968 0.220 0.939 0.300 0.956

1.0e-04 1.000 1.000 0.620 0.983 0.000 0.336 0.640 0.983 0.610 0.982 0.290 0.952 0.330 0.963 0.300 0.948 0.360 0.963

1.0e-05 1.000 1.000 0.490 0.973 0.000 0.093 0.630 0.983 0.570 0.980 0.220 0.949 0.440 0.968 0.260 0.942 0.460 0.969

1.0e-06 1.000 1.000 0.010 0.762 0.000 0.016 0.660 0.984 0.630 0.982 0.320 0.951 0.360 0.957 0.290 0.948 0.480 0.971

1.0e-07 1.000 1.000 0.000 0.192 0.000 0.001 0.690 0.984 0.570 0.980 0.300 0.957 0.360 0.962 0.270 0.947 0.360 0.965

1.0e-08 1.000 1.000 0.000 0.025 0.000 0.000 0.670 0.986 0.610 0.981 0.260 0.946 0.440 0.966 0.250 0.941 0.500 0.971

1.0e-09 1.000 1.000 0.000 0.002 0.000 0.000 0.540 0.978 0.610 0.978 0.290 0.955 0.420 0.964 0.290 0.943 0.410 0.963

Function f7 Crowding DE DELS Species DE DE/nrand/1 DE/nrand/2 DE/inrand/1R DE/inrand/2R DE/inrand/1V DE/inrand/2V

Acc. level ε SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 1.000 1.000 0.270 0.951 0.000 0.528 0.000 0.825 0.020 0.869 0.000 0.738 0.000 0.760 0.000 0.705 0.000 0.742

1.0e-04 1.000 1.000 0.160 0.944 0.000 0.364 0.000 0.804 0.010 0.837 0.000 0.728 0.000 0.733 0.000 0.681 0.000 0.723

1.0e-05 0.010 0.865 0.010 0.880 0.000 0.105 0.000 0.783 0.000 0.573 0.000 0.708 0.000 0.627 0.000 0.670 0.000 0.630

1.0e-06 0.000 0.244 0.000 0.510 0.000 0.019 0.000 0.748 0.000 0.203 0.000 0.712 0.000 0.324 0.000 0.650 0.000 0.382

1.0e-07 0.000 0.029 0.000 0.109 0.000 0.002 0.000 0.697 0.000 0.023 0.000 0.676 0.000 0.106 0.000 0.644 0.000 0.127

1.0e-08 0.000 0.003 0.000 0.013 0.000 0.000 0.000 0.648 0.000 0.006 0.000 0.647 0.000 0.018 0.000 0.612 0.000 0.026

1.0e-09 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.570 0.000 0.000 0.000 0.600 0.000 0.002 0.000 0.568 0.000 0.005

Function f8 Crowding DE DELS Species DE DE/nrand/1 DE/nrand/2 DE/inrand/1R DE/inrand/2R DE/inrand/1V DE/inrand/2V

Acc. level ε SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.998 1.000 1.000 0.990 0.998 0.990 0.995

1.0e-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0e-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.995

1.0e-06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.998 0.990 0.995

1.0e-07 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.998 1.000 1.000

1.0e-08 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.998 1.000 1.000 1.000 1.000 1.000 1.000

1.0e-09 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.998 1.000 1.000

approaches tested in this study, since it exhibits a very good

performance (e.g. functions f4, f6, and f8). However, when the

accuracy level increases it can not maintain the population on

many global minima (e.g. functions f1−f3, f5, and f7). Hence,

as depicted in Table I, for the aforementioned functions, both

SR and PR measures decrease as the accuracy level increase.



Similarly, the DELS method, although it performs very well in

functions f1, f2, f4 and f8, in the most challenging functions

with many global minima (e.g. functions f3, f5, f6, and f7) its

performance slowly degrades as the accuracy level increases.

As expected DE/nrand/1 and DE/nrand/2 algorithms, exhibit

very good performance, in terms of SR and PR measures,

for the majority of the considered functions (e.g. functions

f1−f4, f6, f7, and f8). Both strategies, exhibit either equal or

better performance when compared against the aforementioned

methods, especially when the accuracy level increases (e.g.

functions f1 − f4, and f8). In detail, in most challenging

problems (e.g. functions f3, f5, f6, and f7), DE/nrand/1 locates

either all or a high number of global minima, irrespectively of

the accuracy level. In the functions where Crowding DE and

DELS perform poorly, DE/nrand/1 performs better in terms of

PR and SR, e.g. in f3, and the high accuracy levels of f5 and

f7. Similarly, in most of the functions DE/nrand/2 performs

equally well, while in the challenging f3 function exhibits the

best performance in comparison with all the other methods.

Comparing DE/nrand against the proposed algorithms, we

can generally observe that the proposed approaches exhibit

either a comparative or an equally well performance in most

of the tested functions. Only in a few cases, the proposed ap-

proaches exhibits a superior performance against the DE/nrand

algorithms. With much less computational cost, algorithms

with a similar or slightly better performance can be developed.

In detail, the index-based neighborhood approaches follow the

performance of their corresponding DE/nrand algorithm, i.e.

the DE/inrand/1R and DE/inrand/1V follow the performance

of DE/nrand/1, and similarly DE/inrand/2R and DE/inrand/2V

follow the performance of DE/nrand/2.

All proposed approaches with either the ring or the Von

Neumann index-based neighborhood exhibit very good per-

formance in the f2, f4 and f8 functions, with the latter neigh-

borhood to perform slightly worse for some accuracy levels,

e.g. in the f2 and f8 functions. Regarding the f1 function, the

proposed algorithms exhibit lower PR and SR values than the

DE/nrand/1 and DE/nrand/2 algorithms. In the most challeng-

ing problems, the proposed approaches follow the performance

of the DE/nrand family with either equal or slightly worse

performance in terms of SR and PR values. The proposed

approaches exhibit either a superior or an equally well per-

formance in the f3 function. In this case the DE/inrand/1R

exhibits higher SR and PR values against the DE/nrand/1

algorithm, irrespectively of the accuracy level. In f5 and f7, all

proposed algorithms perform similarly with the corresponding

DE/nrand algorithms, while in the f6 function the index-

based neighborhood approaches exhibit lower PR and SR

values, with the same trends as the corresponding DE/nrand

algorithms. Between the index-based neighborhoods, the ring

topology seems to exhibit better performance than the Von

Neumann topology. However, a further investigation on the

index-based topologies should be made to draw any safe

conclusions.

Based on the aforementioned observations, we believe that

the proposed index-based neighborhood approaches exhibit

a great potential to accurately locate many global minima

with a low computational cost, and thus successfully tackle

multimodal functions.

A. Convergence speed

In this section, we exhibit experimental results for all

considered algorithms in terms of convergence speed. To

measure the convergence speed of an algorithm at a pre-

specified level of accuracy, we obtain the required number

of function evaluations in which it can accurately locate all

global minima of the problem at hand. Specifically, for the

accuracy level of ε = 10−4, for each problem and each

algorithm, we have conducted 100 independent simulations

and the aforementioned parameter setup. Table II demonstrates

the mean number of function evaluations (Mean), its standard

deviation (St.D.), the SR measure, and the mean value of the

PR measure over the f1, f2, f4, and f8 functions. Furthermore,

to evaluate the statistical significance of the observed function

evaluations differences, for each algorithm we conduct four

two-sided Wilcoxon rank sum test between the corresponding

algorithm and the proposed index-based approaches in the

following order: DE/inrand/1R, DE/inrand/2R, DE/inrand/1V,

and DE/inrand/2V. The null hypothesis in each test is that

the samples compared are independent samples from iden-

tical continuous distributions with equal medians. Thereby,

we mark with “+” the cases when the null hypothesis is

rejected at the 5% significance level and the corresponding

proposed approach exhibits superior performance. The “–”

mark indicates that the null hypothesis is rejected at the

same level of significance and the proposed approach exhibits

inferior performance, while the “=” mark indicates that the

performance difference is not statistically significant.

It can be clearly observed that in the majority of the tested

cases the proposed index-based neighborhood algorithms, with

either ring or Von Neumann neighborhoods, produce compet-

itive or better performance in terms of lower mean values

of function evaluations. The most promising approach seems

to be the DE/inrand/1V algorithm, since it exhibits either

the best or an equally well performance in comparison with

the other algorithms, while in the second place comes the

DE/inrand/1R algorithm. Comparing the proposed algorithms

with the Crowding DE, the DELS and the Species DE al-

gorithms, it can be clearly observed that all the proposed

approaches exhibit statistical significant performance gains

for all considered test cases. Furthermore, the index-based

neighborhood algorithms perform better or equally well to the

DE/nrand/1 and DE/nrand/2 algorithms. Both DE/inrand/1R

and DE/inrand/1V enhance the convergence speed of the

DE/nrand/1 algorithm, while a similar behavior is observed

for the DE/inrand/2R and DE/inrand/2V algorithms against

the DE/nrand/2. Between the index-based neighborhood algo-

rithms the DE/inrand/1R algorithm produce the best perfor-

mance in terms of Success Rate and a quite well performance

in terms of mean values of function evaluations.

Furthermore, Figure 1, illustrates the behavior of the consid-

ered methods during the simulations. Specifically, we perform



Fig. 1. Mean number of global minima found during 100 independent simulations of all methods over f1–f8 (ε = 10
−4)

TABLE II
CONVERGENCE SPEED (ACCURACY LEVEL ε = 10

−4)

Function f1 Mean St.D. SR Mean PR St. Sig.

Crowding DE 39503.000 6215.320 1.000 1.000 (+/+/+/+)
DELS 13264.000 1544.790 1.000 1.000 (+/+/+/+)

Species DE 12098.500 4111.740 1.000 1.000 (+/+/+/+)
DE/nrand/1 7210.000 1057.780 1.000 1.000 (+/–/+/–)
DE/nrand/2 10991.900 1694.270 0.990 0.997 (+/+/+/+)

DE/inrand/1R 7137.780 5447.700 0.900 0.967 (=/–/+/–)
DE/inrand/2R 8910.870 1147.710 0.920 0.973 (+/=/+/+)
DE/inrand/1V 6496.770 2586.140 0.930 0.977 (–/–/=/–)
DE/inrand/2V 9090.590 1852.580 0.850 0.950 (+/–/+/=)

Function f2 Mean St.D. SR Mean PR St. Sig.

Crowding DE 49245.000 4033.680 1.000 1.000 (+/+/+/+)
DELS 21499.000 2040.330 1.000 1.000 (+/+/+/+)

Species DE 37107.200 19760.100 0.960 0.990 (+/+/+/+)
DE/nrand/1 13806.000 1437.790 1.000 1.000 (+/–/+/–)
DE/nrand/2 26079.000 3029.230 1.000 1.000 (+/–/+/+)

DE/inrand/1R 11730.000 1798.510 1.000 1.000 (=/–/+/–)
DE/inrand/2R 20539.800 3179.180 0.980 0.995 (+/=/+/+)
DE/inrand/1V 12489.900 6836.550 0.990 0.998 (–/–/=/–)
DE/inrand/2V 19965.300 3101.480 0.980 0.995 (+/–/+/=)

Function f4 Mean St.D. SR Mean PR St. Sig.

Crowding DE 14390.000 3602.620 1.000 1.000 (+/+/+/+)
DELS 5779.000 1063.380 1.000 1.000 (+/+/+/+)

Species DE 6219.280 2854.200 1.000 1.000 (+/+/+/+)
DE/nrand/1 4259.000 687.713 1.000 1.000 (+/–/+/–)
DE/nrand/2 5198.000 906.428 1.000 1.000 (+/–/+/+)

DE/inrand/1R 3010.000 713.294 1.000 1.000 (=/–/+/–)
DE/inrand/2R 3776.000 801.655 1.000 1.000 (+/=/+/+)
DE/inrand/1V 2995.000 674.406 1.000 1.000 (–/–/=/–)
DE/inrand/2V 3558.000 624.933 1.000 1.000 (+/–/+/=)

Function f8 Mean St.D. SR Mean PR St. Sig.

Crowding DE 11729.000 1554.090 1.000 1.000 (+/+/+/+)
DELS 13737.000 1257.520 1.000 1.000 (+/+/+/+)

Species DE 22453.900 9632.750 1.000 1.000 (+/+/+/+)
DE/nrand/1 8211.000 1058.200 1.000 1.000 (+/–/+/–)
DE/nrand/2 10777.000 1178.500 1.000 1.000 (+/+/+/+)

DE/inrand/1R 7535.000 826.013 1.000 1.000 (=/–/+/–)
DE/inrand/2R 9588.000 967.062 1.000 1.000 (+/=/+/+)
DE/inrand/1V 7323.000 782.234 1.000 1.000 (–/–/=/–)
DE/inrand/2V 9300.000 979.487 1.000 1.000 (+/–/+/=)

100 independent simulations for the accuracy level ε = 10−4

and record the number of global minima the method lo-

cates throughout the simulation. As expected, DE/nrand/1 and

DE/nrand/2 algorithms efficiently and accurately locate a high

number of global minima and maintain them until the end of

the simulation for the majority of the tested cases. Similarly,

the proposed approaches follow the same behavior in most

of the cases, while in some exhibit better performance in

terms of convergence speed (e.g. in functions f2, f4 and f8).

Nevertheless, there are a few cases where their performance

deteriorates. Although they exhibit a good niching effect and

succeed to locate several minima, they can not maintain them

until the end of the simulation, such as DE/inrand/1V in the f3
function and DE/inrand/2R, DE/inrand/2V in the f5 function.

Moreover, DELS and Crowding DE exhibit similar behavior,

but they tend to locate the global minima slowly. On the

other hand, Species DE performs poorly in three of the most

challenging functions (f3, f6 and f7), while in functions f2 and

f8 locates the required number of global optima quite slowly.

It can accurately locate and maintain all global optima with a

good convergence speed only in the f1 and f4 functions. The

aforementioned behavior of the considered algorithms tends

to be more visible as the accuracy level increases and can be

captured by the PR measure demonstrated in Table I.

B. Population size influence

In this section, we study the influence of the population

size on the performance of the considered algorithms. Thus,

for several population sizes, we measure their performance by

calculating the number of global minima found at the accuracy

level ε = 10−4. The test suite comprises of the functions

having many global minima (e.g. functions f3, f5, f6, and

f7). Figure 2 illustrates the performance of the considered

algorithms, as the population size increases from 40 to 300

individuals.

As expected, all algorithms exhibit a problem dependent

behavior. In general, there exist a range of population size

values where most of the algorithms can locate a high number

of global minima. More specifically, in function f6 as the

population size increase, almost all algorithms can locate more

global minima. In functions f5 and f7, as the population



Fig. 2. Population size effect on the f3, f5, f6 and f7 functions

increases DE/nrand/1, DE/inrand/1R, DE/inrand/1V, manage

to locate a higher number of global minima. The remaining

algorithms can locate and maintain a high number of global

optima with population sizes ranging from 75 to 150, while

after that as the population size increases their performance

deteriorates. Function f3 is a special case for all algorithms,

in which DE/nrand/2, DE/inrand/2R and DE/inrand/2V ex-

hibit their best performance with a population size between

100 and 150 individuals, and afterwards their performance

rapidly decrease. In turn, the performance of DE/nrand/1,

DE/inrand/1R, and DE/inrand/1V generally increases as the

population size increases. On the contrary, both Crowding DE

and DELS perform poorly in the f3 function, irrespectively of

the population size.

In the case of the Species DE, the observed performance

validates our assumption that it needs a higher population size

to accurately locate all global minima on the given budget

of function evaluations. Except for the f3 function, where it

performs poorly irrespectively of the population size, Species

DE performance increases as the population size increases. Its

best performance is demonstrated in f5 function for the larger

population sizes values, e.g. for population sizes ranging from

200 to 300.

C. Investigating the ring index-based neighborhood topology

The aforementioned observations suggest that a further

investigation should be made on the index-based neighborhood

approaches. Here, we conduct a brief analysis of the ring

topology and especially how the ring radius influences the

performance of the proposed approach. Specifically, for the

accuracy level of ε = 10−4, we measure the performance of

the DE/inrand/1R and DE/inrand/2R by calculating the number

of global minima found on the most challenging functions

considered in this work (e.g. functions f3, f5, f6, and f7).

For each problem and each algorithm we have conducted

100 independent simulations for neighborhood radius nr ∈
{1, 2, . . . , NP/2}. Noticed that the nr = NP/2 case is the

same as applying the DE/nrand/1 and DE/nrand/2 algorithms.

Fig. 3. Neighbourhood radius effect on the f3, f5, f6 and f7 functions

To this end, Figure 3 illustrates mean values of the per-

formance of the DE/inrand/1R and DE/inrand/2R algorithms

calculated over the different neighborhood radius values. Error

bars around the mean depict the standard deviation of the

measured performance.

It can be observed that the performance of the applied

algorithms is problem dependent. In the f3 function, the

DE/inrand/1R exhibits very good performance for the majority

of the neighborhood radius values, while it performs best for

either very small or very large radius values. On the contrary,

DE/inrand/2R performs best only when nf = 1, while for the

remaining radius values its performance deteriorates. In the

f5 − f7 functions the performance of both DE/inrand/1R and

DE/inrand/2R increases as the neighborhood radius increase.

This trend is strongly highlighted in the f5 and f7 functions,

where the best performance for both algorithms is when the

neighborhood radius reaches the NP/2 value (DE/nrand/1

and DE/nrand/2 algorithms). Finally, in the f5 function, all

radius values exhibit great performance, while both considered

algorithms exhibit their best performance for radius values

greater than 30. Nevertheless, in most cases the performance

difference between the different neighborhood radius values is

small. Thus, the selection of the smallest neighborhood radius

nf = 1 is highly recommended to minimize the computational

cost of the algorithm.

In the majority of the algorithms that handle multimodal

functions, the computational cost depends on the utilized

niching methodology. In this study, we produce acceptable

performance with the index-based neighborhood, with the

potential to improve its performance with a computational

cost overhead, i.e. if we utilize a high neighborhood radius

value that reach the DE/nrand/1,2 algorithms. To this end, in

a future work we intend to study the utilization of varying

neighborhood topologies that may produce either a similar or

a higher performance with the ability to maintain a minimal

computational cost overhead.



V. CONCLUSIONS

In this work, we modify a recently proposed DE family of

mutation strategies, which can handle multimodal functions,

namely the DE/nrand family [6]. To induce the classical DE

mutation strategies to exhibit a niching effect, DE/nrand family

incorporates information regarding the real nearest neighbor-

hood of each potential solution. Nevertheless, their calculation

is computationally expensive. Thus, to alleviate this problem,

instead of computing the real nearest neighbor computations,

we incorporate an index-based neighborhood into the mutation

strategies in an attempt to radically reduce their computational

cost and simultaneously locate and maintain multiple global

optima.

Experimental results on eight well known multimodal func-

tions with different characteristics and comparisons against

five state-of-the-art DE algorithms, demonstrate that the pro-

posed mutation strategies are competitive and promising.

Specifically, they can locate many global optima and maintain

them through the evolution process, with a substantial decrease

of their computational cost. In comparison with their ancestor

mutation strategies, their performance is either equally well

or slightly worse. In terms of convergence speed, they can

accurately locate all global minima in less function evaluations

than the other algorithms. Finally, experiments regarding the

effect of the population size show that, in most of the cases,

the behavior of the proposed algorithms is robust.

In a future work, an extensive study on the impact of the

index–based neighborhoods on more challenging multimodal

function families, with higher dimensions and different charac-

teristics is scheduled. In addition, it would be very interesting

to study other methodologies that could help reduce the

computational cost of the DE/nrand family and simultaneously

maintain their niching capabilities.
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