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Abstract

In recent years, the Particle Swarm Optimization has rapidly gained increasing popularity and many variants and hybridap-
proaches have been proposed to improve it. In this paper, motivated by the behavior and the spatial characteristics of the social and
cognitive experience of each particle in the swarm, we develop a hybrid framework that combines the Particle Swarm Optimization
and the Differential Evolution algorithm. Particle Swarm Optimization has the tendency to distribute the best personal positions of
the swarm particles near to the vicinity of problem’s optima. In an attempt to efficiently guide the evolution and enhancethe conver-
gence, we evolve the personal experience or memory of the particles with the Differential Evolution algorithm, withoutdestroying
the search capabilities of the algorithm. The proposed framework can be applied to any Particle Swarm Optimization algorithm with
minimal effort. To evaluate the performance and highlight the different aspects of the proposed framework, we initially incorporate
six classic Differential Evolution mutation strategies inthe canonical Particle Swarm Optimization, while afterwards we employ
five state-of-the-art Particle Swarm Optimization variants and four popular Differential Evolution algorithms. Extensive experi-
mental results on twenty five high dimensional multimodal benchmark functions along with the corresponding statistical analysis,
suggest that the hybrid variants are very promising and significantly improve the original algorithms in the majority ofthe studied
cases.

Keywords: Global Optimization, Particle Swarm Optimization, Differential Evolution, Hybrid approach, Social and cognitive
experience, Swarm intelligence

1. Introduction

The Particle Swarm Optimization (PSO) algorithm is an Evo-
lutionary Computation method, which belongs to the broad
class of Swarm Intelligence methods. The PSO algorithm was
introduced by Kennedy and Eberhart [20] and is inspired by
the social behavior of bird flocking and fish schooling. It is
based on a social-psychological model of social influence and
social learning. The fundamental hypothesis to the develop-
ment of PSO is that an evolutionary advantage is gained through
the social sharing of information among members of the same
species. Moreover, the behavior of the individuals of a flock
corresponds to fundamental rules, such as nearest-neighbor ve-
locity matching and acceleration by distance [12, 19, 47]. The
PSO algorithm is capable of handling non-differentiable, dis-
continuous and multimodal objective functions and has gained
increasing popularity in recent years due to its relative simplic-
ity and its ability to efficiently and effectively tackle several
real-world applications [10, 21]. Without loss of generality, we
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will consider only minimization problems. In this case, theob-
jective is to locate a global minimizer of a functionf (objective
function).

Definition 1. A global minimizer x⋆ ∈ R
D of the real–valued

function f :E → R is defined as:

f (x⋆) 6 f (x), ∀ x ∈ E,

where the compact setE ⊆ R
D is a D–dimensional scaled trans-

lation of the unit hypercube.

To improve the performance and the convergence behavior
of Particle Swarm Optimization algorithm, several hybrid ap-
proaches have been proposed [2, 5, 38, 49, 73, 75, 77, 87, 99,
106]. One class of variations include hybrids that combine
the PSO and the Differential Evolution (DE) algorithms [92].
These approaches aim to aggregate the advantages of both
methods to efficiently tackle the optimization problem at hand.
The PSO–DE hybrids usually combine the evolution schemes
of both algorithms to produce a new evolutionary position
scheme [15, 16, 35, 68, 71, 110]. Specifically, they apply oneof
the two algorithms as local search to evolve some pre-specified
particles [37, 45, 113], or evolve the control parameters with
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one of the evolutionary approaches to produce a parameter-
free hybrid [24, 67, 68, 88]. Several hybridization perspec-
tives of the PSO algorithm have been proposed in the litera-
ture, amongst others the interested reader should refer to the
following review papers [99, 106]. Thangarajet al. [99], re-
view the hybridization perspectives of the PSO algorithm with
various different algorithm such as Genetic Algorithms, Dif-
ferential Evolution and other techniques. Consequently, Xin et
al. [106] present a thorough review of the state-of-the-art hy-
bridization perspectives of PSO and DE algorithms, as well as
several other representative hybrids. They provide classifica-
tion mechanisms and a comprehensive taxonomy to differenti-
ate and analyze the existing hybrid PSO/DE algorithms.

The aforementioned hybrid approaches can be viewed under
the general concept of Memetic Computing (MC) [59, 62, 63,
69]. As stated in [62], “Memetic Computing is a broad sub-
ject which studies complex and dynamic computing structures
composed of interacting modules (memes) whose evolution dy-
namics is inspired by the diffusion of ideas. Memes are simple
strategies whose harmonic coordination allows the solution of
various problems”. In other words, complex ideas can be an-
alyzed as memes which propagate, interact and change within
a population. Thereby, their character will constantly undergo
evolution and tend towards progressive improvements. In Com-
putational Intelligence a meme can be identified as an agent,a
search strategy, an operator, or a complex system component,
e.g. an optimization methodology which constantly evolves
through time. The research field of MCs has blossomed in the
last decade resulting in many successful methodologies. Ingen-
eral, the importance of MC methodologies is related to the No
Free Lunch theorem (NFL) [105]. The NFL theorem mathe-
matically proves that the average performance of any pair of
optimization algorithms, across all possible optimization prob-
lems is identical. Thereby, an optimization algorithm which
performs well on a class of problems, will certainly perform
worse on a set of the remaining optimization problems, since
this is the only possibility in which the performance of the
pair of algorithms will be on average equal over all optimiza-
tion problems. Based on this theorem, the broad class of MC
methodologies became a common practice in the general field
of Computational Intelligence and particular in the Evolution-
ary Computing community, i.e. the combination of various in-
teracting algorithmic components (memes) to efficient tackle a
specific class of problems.

Similarly, under the general concept of MC as a composition
of interacting/evolving modules (memes), we propose a gen-
eral and simple framework to hybridize the well–known PSO
and DE optimization algorithms. Specifically, the current study
has been motivated by the behavior and the spatial characteris-
tics of the personal experience of each particle (memory swarm)
of the PSO algorithm, during the evolution process. PSO incor-
porates in its swarms two main concepts, theexplorer-swarm
and thememory-swarm[10]. During evolution each particle in
the swarm remembers its current position in the search space, as
well as the best position it has ever encountered so far, i.e.the so
called personal best position. Thereby PSO explores the most
promising regions of search space (explorer-swarm), while in

parallel retains the best positions found so far by the swarm
(memory-swarm). The movement of each particle is controlled
by two forces, related to the best previous position of the parti-
cle (cognitive experience) and the position attained by thebest
particle in its society (social experience), i.e. either the whole
swarm or its neighborhood. Extensive simulations indicatethat
through the evolution process of the PSO algorithm, the cogni-
tive experience of each particle, i.e. thememory-swarm, tend to
be distributed in the vicinity of the problem’s optima. To this
end, we propose a hybrid evolutionary framework to efficiently
evolve the social and cognitive experience of the swarm and en-
hance the convergence properties of the PSO algorithm. Here,
we incorporate the Differential Evolution algorithm as thesec-
ond interactive module, which is a simple and compact evolu-
tionary algorithm exhibiting good convergence characteristics.
To evaluate the performance of the proposed framework, we ini-
tially apply six classic DE mutation strategies on the canonical
PSO. Afterwards, we combine five state-of-the-art PSO variants
with the three best performing DE mutation strategies along
with four popular DE algorithms. Extensive experimental re-
sults on 25 difficult benchmark functions along with the corre-
sponding statistical analysis suggest that the proposed frame-
work is very promising.

Preliminary results have been presented in [25], in which
a part of thememory-swarmhas been evolved during evolu-
tion, in an attempt to improve the convergence characteristics
of the PSO algorithm and to reduce any computational over-
head of the DE algorithm. The utilized heuristic rule selects
to evolve only the best personal position that has been changed
(improved) during the previous evolution step. To eliminate
the need for any heuristic rule and make the framework even
simpler, in the paper at hand we evolve all personal best po-
sitions of the swarm. Furthermore, based on the hybrid evolu-
tionary algorithm taxonomy presented in [106], our preliminary
work [25], and its extensions in the current study belong to the
collaboration-based hybrid PSO/DE approaches. Collaboration
indicates that the parent optimizers cooperate with each other in
the optimization search space in an attempt to seek the optimum
solution. As such, they share or exchange accumulated infor-
mation during their search operations, while their dynamics are
maintained [106].

The novelty of this study lies on the simple structure of the
proposed framework and its scalability. The majority of the
proposed PSO/DE hybrids incorporate complex rules on sev-
eral aspects of the hybrid algorithmic structure, resulting in not
easily implemented hybrid schemes. Here, we propose to apply
an evolutionary algorithm and in particular a DE variant, after
each PSO evolution step on thememory-swarm. The DE algo-
rithm will evolve thememory-swarmas its population, with-
out selecting any specific number of personal best positions
to be applied, or incorporating any complex DE/PSO update
rule to evolve the best positions. Furthermore, DE is applied
on each generation after the PSO evolution operations, without
incorporating any heuristic rule to determine the frequency of
its application. On the contrary, several approaches are evolv-
ing the best personal positions of PSO, but incorporate curious
structures, which can not be easily generalized. For example,
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in [113] the authors evolve the particles one generation with
PSO and one with DE, while they utilize only the DE/rand/2/bin
strategy with randomly chosen best positions and as a base vec-
tor the best position of theexplorer-swarm; in [95] the authors
implement the previously approach to handle multimodal im-
age registration problems; in [37] DE is applied to evolve the
explorer-swarmat pre-specified intervals; Pantet al. [70], pro-
pose a two phase hybrid that consists of alternating phases of
the DE and PSO algorithms; Liuet al. [54] evolve only the
half particles of the swarm with PSO, and apply DE on each
best position by using the positions of theexplorer-swarmin
the mutation strategies; in [110] the authors update the parti-
cles of the swarm with two strategies, namely the DE updating
strategy and a combined DE/PSO updating strategy.

In addition, the structure of the proposed framework is ex-
tensible, i.e. it can be easily generalized to produce a family
of PSO/DE or other PSO-based hybrids. This can be imple-
mented by applying any PSO variant as base algorithm and
any DE variant or other evolutionary algorithm to evolve the
memory-swarmon each generation after the PSO evolutionary
operation. As previously mentioned, in the current study we
straightforwardly apply the proposed framework on the canon-
ical PSO and five PSO variants with different dynamics. In ad-
dition, the proposed framework is implemented with six classic
DE mutation strategies and four popular DE algorithms. The
interested reader should only consider about the characteristics
of the applied algorithms and their effects on the performance
of the resulting scheme.

The rest of this article is organized as follows. Section 2
briefly describes the basic operations of the canonical PSO and
the DE algorithms, and presents several related methodologies.
In Section 3, we analyze the behavior of the cognitive and social
experience in the PSO algorithm that motivated the proposed
approach. In Section 4, we propose the new hybrid evolution-
ary framework and discuss its characteristics, while in Section 5
we present an extensive experimental analysis. The paper con-
cludes in Section 6, with a discussion and some pointers for
future work.

2. Background material

For completeness purposes, in this section we briefly de-
scribe the basic operations as well as some insights about the
main characteristics of the canonical Particle Swarm Optimiza-
tion and the Differential Evolution algorithms. The section ends
with a literature review of several recently proposed PSO vari-
ants.

2.1. The Particle Swarm Optimization algorithm

The PSO algorithm is a population–based stochastic algo-
rithm that exploits a population of individuals to effectively
probe promising regions of the search space. PSO incorpo-
rates two main concepts in its swarms, theexplorer-swarmand
the memory-swarm[10]. During its execution each individual
(particle) of the population (swarm) moves with an adaptable
velocity within the search space in an attempt to explore the

most promising regions (explorer-swarm) and simultaneously
retains in its memory/experience the best position it ever en-
countered (memory-swarm). There exist two main PSO ver-
sions; namely theglobalPSO and thelocal PSO. In theglobal
PSO version, the best position ever attained by the individuals
of the swarm is communicated to all the particles. On the other
hand, thelocal PSO versions incorporate into the PSO structure
the neighborhood concept, in which the best position of each
particle can be propagated between neighboring particles.The
neighborhoods can be either static with pre-specified topolo-
gies or dynamic with variable or adaptive topologies, while
they may utilize either spatial or network-based characteris-
tics [6, 11, 19, 32, 46, 56, 57, 77].

More specifically, each particle is aD-dimensional vector
and the swarmS consists ofNP particles, i.e. ifg is the cur-
rent time step (generation) then the swarm can be denoted as
Sg = {X1

g,X
1
g, . . . ,X

NP
g }. Therefore, the position of thei-th parti-

cle of the swarm can be represented as:Xi
g = (xi,1

g , x
i,2
g , . . . , x

i,D
g ).

The velocity of each particle is also aD-dimensional vector and
for the i-th particle is denoted as:Vi

g = (vi,1
g , v

i,2
g , . . . , v

i,D
g ). The

best previous position of thei-th particle can be recorded as:
Pi

g = (pi,1
g , p

i,2
g , . . . , p

i,D
g ), the best particle in the swarm (i.e.

in minimization problems, the particle with the smallest fitness
function value) is indicated byPbest

g , while the best particle in

the neighborhood of thei-th particle asPbesti
g . Furthermore, the

neighborhood of each particle is usually defined through itsin-
dex. The majority of the PSO variants utilize thering topology,
which is the most common topology in the literature. In thering
topology, the neighborhood of each particle consists of parti-
cles with neighboring indices [6, 32, 57]. Nevertheless, other
topologies have been also studied [6, 19, 32, 46, 56, 57, 77].

In the present study, we consider the canonical PSO ver-
sion proposed by Clerc and Kennedy [12], which incorporates
the parameterχ, known as theconstriction factor. The main
role of the constriction factor is to control the magnitude of
the velocities and alleviate the “swarm explosion” effect that
sometimes prevented the convergence of the original PSO al-
gorithm [1, 12]. As stated in [12], for each time stepg (gen-
eration), the dynamic behavior of the particles in the swarm is
manipulated using the following equations:

Vi
g+1 = χ

(

Vi
g + c1r1

(

Pi
g − Xi

g
)

+ c2r2
(

Pbesti
g − Xi

g
)

)

, (1)

Xi
g+1 = Xi

g + Vi
g+1, (2)

for i = 1, 2, . . . ,NP, whereχ is the constriction factor parame-
ter,c1 andc2 are positive constants referred to ascognitiveand
socialparameters respectively andr1 andr2 are randomly cho-
sen numbers uniformly distributed in [0, 1]. The cognitive pa-
rameter controls the experience influence of each particle with
respect to its best performance found so far, while the social
parameter with respect to the best position found by its society,
i.e. either the whole swarm or its neighborhood. Furthermore,
in a stability analysis provided in [12], it was implied thatthe
constriction factor is typically calculated according to the fol-
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lowing formula:

χ =
2κ

|2− φ −
√

φ2 − 4φ|
, (3)

whereφ = c1 + c2 andκ = 1, and to guarantee the quick con-
vergence of the scheme the value ofφ has to satisfyφ > 4.
The aforementioned scheme is typically utilized for the con-
stantφ = 4.1, withχ = 0.72984 andc1 = c2 = 2.05 [6, 12].

The next section briefly describes the basic operators of the
Differential Evolution algorithm.

2.2. The Differential Evolution algorithm

The DE algorithm [17, 27, 65, 80, 83, 92] is a stochastic par-
allel direct search method, which utilizes concepts borrowed
from the broad class of Evolutionary Algorithms (EAs). The
DE method requires few control parameters and several ex-
perimental studies have shown that DE has good convergence
properties and outperforms other well known and widely used
EAs [8, 17, 65, 83, 92, 101].

More specifically, DE is a population–based stochastic algo-
rithm that exploits a population of potential solutions (individu-
als) to effectively probe the search space. Like PSO, the popu-
lation of individuals is randomly initialized in the optimization
domain withNP, D–dimensional, vectors following usually a
uniform probability distribution. Individuals evolve over suc-
cessive iterations to explore the search space and try to locate
the minima of the objective function. Throughout the execu-
tion process, the user–defined population size,NP, is fixed. At
each iteration, calledgeneration, new vectors are derived by
the combination of randomly chosen vectors from the current
population. This operation in our context can be referred toas
mutation, while the outcoming vectors asmutant individuals.
Each mutant individual is then mixed with another, predeter-
mined, vector – thetarget vector– through an operation called
recombination. This operation yields the so–calledtrial vec-
tor. Finally, the trial vector undergoes theselectionoperator,
according to which it is accepted as a member of the population
of the next generation, only if it yields a reduction in the value
of the objective functionf relative to that of the target vector.
Otherwise, target vector is retained in the next generation. The
search operators efficiently shuffle information among the in-
dividuals, enabling the search for an optimum to focus on the
most promising regions of the solution space.

Below, we describe the original mutation operators proposed
in [92]. Specifically, for each individualxi

g, i = 1, . . . , NP,
whereg denotes the current generation, the mutant individual
vi

g+1 can be generated according to one of the following equa-
tions:

1. DE/best/1
vi

g+1 = xbest
g + F(xr1

g − xr2
g ), (4)

2. DE/rand/1
vi

g+1 = xr1
g + F(xr2

g − xr3
g ), (5)

3. DE/current-to-best/1

vi
g+1 = xi

g + F(xbest
g − xi

g) + F(xr1
g − xr2

g ), (6)

4. DE/best/2

vi
g+1 = xbest

g + F(xr1
g − xr2

g ) + F(xr3
g − xr4

g ), (7)

5. DE/rand/2

vi
g+1 = xr1

g + F(xr2
g − xr3

g ) + F(xr4
g − xr5

g ), (8)

where xbest
g is the best member of the previous generation,

r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i − 1, i + 1, . . . ,NP} are random inte-
gers mutually different and not equal to the running indexi, and
F > 0 is a real parameter, calledmutation or scaling factor. The
mutation factor F, controls the amplification of the difference
between two individuals and is used to prevent the risk of stag-
nation of the search process. It is also mainly responsible for
the convergence rate of the algorithm. Therefore, an inappro-
priate mutation factor value can cause deceleration of the algo-
rithm and decrease of the population’s diversity. In the original
DE algorithm, the mutation factorF is a fixed and user–defined
parameter, while in many adaptive DE variants each individual
is associated with a different adaptive mutation factor [7,63,
65, 103, 104, 108, 112]. It is clear that more mutation opera-
tors can be generated by either using the above ones as building
blocks [78] or by incorporating population’s spatial informa-
tion in the above strategies [27]. Several DE variants which
either introduce new mutation strategies or new self-adaptive
techniques to tune the control parameters have been recently
proposed [7, 8, 23, 29, 31, 43, 63, 83, 103, 104, 111, 112, 114].

Furthermore, here we utilize the trigonometric mutation op-
erator [29], which performs a mutation according to the follow-
ing equation, with probabilityτµ:

6. TDE/rand/1

vi
g+1=(xr1

g + xr2
g + xr3

g )/3+ (p2− p1)(xr1
g − xr2

g )+

+(p3− p2)(xr2
g − xr3

g )+ (p1− p3)(xr3
g − xr1

g ), (9)

and with probability (1− τµ), the mutation is performed ac-
cording to Eq. (5), whereτµ is a user defined parameter, typ-
ically set around 0.1. The values ofpm, m = {1, 2, 3} and p′

are obtained through the following equations:p1 =
∣

∣

∣ f (xr1
g )
∣

∣

∣ /p′,

p2 =
∣

∣

∣ f (xr2
g )
∣

∣

∣ /p′, p3 =
∣

∣

∣ f (xr3
g )
∣

∣

∣ /p′, andp′ =
∣

∣

∣ f (xr1
g )
∣

∣

∣+

∣

∣

∣ f (xr2
g )
∣

∣

∣+
∣

∣

∣ f (xr3
g )
∣

∣

∣ .

Having performed mutation, the recombination operator is
subsequently applied to further increase the diversity of the
population. To this end, the mutant individuals are combined
with other predetermined individuals, called the target individ-
uals. Specifically, for each componentl (l = 1, 2, . . . ,D) of the
mutant individualvi

g+1, we randomly choose a real numberr
in the interval [0, 1]. Then, we compare this number with the
user–definedrecombination constant, CR. If r 6 CR, then we
select, as thel–th component of the trial individualui

g+1, the l–

th component of the mutant individualvi
g+1. Otherwise, thel–th

component of the target vectorxi
g becomes thel–th component

of the trial vector. This operation yields the trial individual. It
is evident that if the value of the recombination constant istoo
small (close to zero) the effect of the mutation operator is can-
celled, since the target (and not the mutant) vector will become
the new trial vector.
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Finally, the trial individual is accepted for the next generation
only if it reduces the value of the objective function (selection
operator):

xi
g+1 =

{

ui
g+1, if f (ui

g+1) < f (xi
g)

xi
g, otherwise

. (10)

2.3. Related work

To improve the performance and the convergence character-
istics of the Particle Swarm Optimization algorithm, several
variations and hybrid approaches, with altered search dynam-
ics, have been proposed [2, 5, 38, 49, 72, 73, 77, 87]. However,
some PSO variants have gained a lot of attention and acceptance
through the Evolutionary Computing research community, due
to their successful novel PSO schemes, which have exhibited
great performance gains over a multitude different applications.
They have successfully exploited different aspects of the PSO
algorithm, either by utilizing novel velocity update rulesthat
enhance PSO’s exploratory/exploitative search power or byin-
corporating in PSO special schemes to exploit the structureof
the benchmark function at hand. Representative examples of
the former include fully informed topologies [57], barebones
velocity updates [46], multiple swarms [4, 53], unified opera-
tors [77], and comprehensive learning schemes [52], while ex-
amples of the latter include schemes such as cooperation and
coevolution [3, 51].

More specifically, in an attempt to improve the performance
of the canonical PSO [12, 47] and to simplify its scheme
by eliminating its control parameters, Kennedy in [46] pro-
posed the barebones PSO (BBPSO). BBPSO updates its veloc-
ity through a Gaussian distribution, where its location param-
eters depend on the best personal and the best neighborhood
positions, i.e. the mean value is the average of these positions,
while the variance equals with their distance. Thereby, BBPSO
initially facilitates exploration of the search space, since the
best personal positions are far away from each other. As the
algorithm evolves through time, the deviation of the best per-
sonal positions decreases and it focuses on exploiting the av-
erage of the best personal and best neighborhood positions.
In [57], Mendeset al. proposed a simple strategy to update
the positions of each particle, namely the fully informed par-
ticle swarm (FIPS). FIPS updates each particle’s position with
a weighted sum of all of its neighboring particles. Thus, each
particle is influenced and attracted by the information of all of
its topological neighbors and the best neighboring particle. In
addition, Peramet al. proposed in [79] a new algorithm that up-
dates the particle’s velocity through observation of threediffer-
ent particles, the personal best, the global best, and the particle
that has a higher fitness and is nearer to the current particlewith
a maximal fitness-to-distance ratio. In turn, the authors in[75–
77] tried to tackle the trade-off between the explorative and ex-
ploitative characteristics of the canonical PSO by proposing a
unified procedure, namely the Unified PSO (UPSO). UPSO uti-
lizes a velocity update scheme that efficiently combines thelo-
cal and global versions of the canonical PSO algorithm, result-
ing in a very competitive PSO variant [77]. Moreover, DM-
SPSO [53] adopts multiple small swarms with a random re-

grouping strategy to introduce a dynamically changing neigh-
borhood structure to each particle. To avoid stagnation anden-
hance the diversity of the swarms, once in a while it randomly
regroups the swarm’s neighborhoods. Consequently, CLPSO
updates each particle’s velocity by utilizing a novel learning
scheme based on the swarm’s best personal positions [52]. It
uses the best positions of the other particles as exemplars to be
learned from. This strategy produces a scheme on each dimen-
sion in which each particle may potentially learn from different
exemplars per dimension. Hence, CLPSO makes the particles
have more exemplars to learn from and a potential larger search
space to roam. CLPSO has exhibited great performance gains
mostly on multimodal functions, while it is not the best choice
for solving unimodal problems [52].

Furthermore, to tackle large-scale optimization problems,
many researchers have employed the cooperation and co-
evolution concepts in their optimization algorithms [3, 51,
81, 107]. Several works incorporate the inspiring coopera-
tive/coevolution scheme of Potter and De Jong [81]. In PSO,
an early attempt to apply Potter’s scheme has been made in [3],
resulting in two new cooperative schemes, namely CPSO-SK

and CPSO-HK . The latter scheme is an exact implementa-
tion of Potter’s scheme to PSO, while the former combines
the PSO and the CPSO-SK algorithms. The resulting algo-
rithms significantly improve the original PSO, due to the coop-
eration/coevolution of multiple swarms which simultaneously
optimize different components of the solution vectors. An-
other representative work is presented in [51], where a new
cooperative coevolving PSO variant is introduced. The pro-
posed scheme has been built on the aforementioned cooperative
schemes, while it employs an effective variable grouping tech-
nique (random grouping). Additionally, it adopts a new position
update rule, which is based on the Cauchy and Gaussian distri-
butions and a coevolving scheme that dynamically determines
the variable’s subcomponent sizes.

Another active research trend in the last years is the inte-
gration of well established and effective PSO variants in new
adaptive or self-adaptive schemes, in an attempt to aggregate
their characteristics and their search dynamics. To this end,
Frankenstein’s PSO [61] integrates three distinct algorithmic
PSO components to combine their effects and produce an ef-
fective optimizer. Specifically, it integrates as first component a
time-varying population topology that reduces its connectivity
over time to improve the tradeoff between speed and quality as-
sociated with topologies of different connectivity degrees. Sec-
ondly, based on the good performance gains of the FIPS algo-
rithm compared with other PSO variants with different topolo-
gies, it utilizes FIPS as the main velocity update rule. Finally,
to tune the exploration and exploitation behavior of the algo-
rithm, the decreasing inertia weight procedure is includedas
the third component. The resulting scheme is very promising
and in many cases it performs better than its three main com-
ponents. In turn, Wanget al. in [102] proposed a self-adaptive
learning-based PSO scheme, which simultaneously adopts four
PSO search strategies with a different behavior based on the
problem’s characteristics. To adapt the four strategies, it incor-
porates a probabilistic model that tunes the probability ofeach
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strategy based on their ability to generate fitter solutionsthough
the optimization procedure.

Furthermore, the concept of heterogeneous PSO variants has
been adopted in many recent works [22, 60, 66, 90]. This
concept includes either sub-swarms that utilize differentmeta-
heuristic algorithms and cooperate with each other, or swarms
with different strategies per particle that are selected from a
pool of strategies with a predefined or a dynamic way. Further-
more, inspired by the adaptive filter and the statistical learn-
ing theory an adaptive PSO scheme (MultiPSO) has been re-
cently proposed [28]. MultiPSO integrates several different
PSO schemes in an attempt to aggregate their characteristics
and their search dynamics. Its framework is based on tracking
the parameters of a multinomial distribution to capture success-
ful evolution changes of each PSO scheme in the evolutionary
process.

3. Studying the cognitive and social experience of PSO

In this section, we investigate the behavior and the dynamics
of a swarm in PSO during its evolution. Our findings suggest
that the particle’s best positions tend to gather around minimiz-
ers of the objective function. This behavior motivates our ap-
proach, which aims to evolve this knowledge through an evolu-
tionary algorithm. The main goal is to efficiently guide the best
knowledge of each particle towards a global optimum, without
destroying the search capabilities of the PSO algorithm.

Numerous PSO variations have been proposed to improve
the accuracy of solutions and PSO convergence behavior [57,
74, 75]. In [2, 12] it has been formally proven that each par-
ticle converges to a weighted average of its best personal and
best neighborhood positions. Motivated by this finding, several
PSO variants have been introduced that incorporate knowledge,
exploiting the best personal positions [46, 57]. Moreover,the
exploitation of the best personal experience has been incorpo-
rated in several PSO variants with many different methodolo-
gies. Specifically, some variants adapt the best personal posi-
tions using distributions that are based on them (e.g. Barebones
PSO [46]) or include their weighted sum (e.g. FIPS [57]). Other
variants incorporate update schemes that utilize information of
the best personal positions by means of an average of two or
more [95, 113].

The aforementioned approaches and their convergence char-
acteristics enhance our findings. Extensive experimental simu-
lations have verified that the PSO algorithm tends to distribute
the best positions encountered by the particles in the swarmto
the vicinity of problem’s minima. Additionally, the local ver-
sion of PSO has more explorative characteristics and tends to
distribute the best personal positions to regions around many
minima, while the global version of PSO exhibits more ex-
ploitive characteristics and rapidly gathers the best personal ex-
perience to the basin of attraction of a (global or local) mini-
mum.

To demonstrate this behavior, we will utilize as a case study
the two-dimensional Shekel’s Foxholes benchmark function.

Figure 1: 3–D Plot of the Shekel’s Foxholes function

Shekel’s Foxholes function can be defined according to the fol-
lowing equation:

f (x) =
1

0.002+ ψ1(x)
, x j ∈ [−65.536, 65.536],

whereψ1(x) =
∑25

i=1 1/(i +
∑2

j=1(x j − ai j )6). The parameters for
this function are:

ai1 = {−32,−16, 0, 16, 32}, where

i = {0, 1, 2, 3, 4} andai1 = aimod 5,1

ai2 = {−32,−16, 0, 16, 32},where

i = {0, 5, 10, 15, 20}and

ai2 = ai+k,2, k = {1, 2, 3, 4},

which has twenty four distinct local minima and one global
minimum f (−32, 32)= 0.998004.To further elucidate Shekel’s
Foxholes shape, a surface plot is illustrated in Figure 1.

Additionally, we illustrate the positions of a swarm, as well
as the best position of each particle, evolved by the canonical
PSO algorithm on the Shekel’s Foxholes benchmark function.
Specifically, Figure 2 illustrates contour plots of the Shekel’s
Foxholes function and the positions of a swarm consisting of
40 particles that have been evolved with the local version ofthe
canonical PSO after 1, 5, 10, and 20 generations, while Figure 3
demonstrates the distribution of their best personal experience.
The two figures show that the role of swarm’s positions is to
initially explore the search space before gathering them around
their attractor’s, i.e. the personal and best neighborhoodposi-
tions. In turn, the swarm’s best positions tend to rapidly gather
around the basins of attraction of the local/global minima and
exploit their regions. It is evident that an efficient strategy to
adapt or evolve the swarm’s best positions, i.e. the social and
cognitive experience of the swarm, may enhance the perfor-
mance of the original PSO scheme.

To study and evaluate theclustering tendencyof swarm’s
components, i.e. the positions and the social and cognitiveex-
perience, we utilize a statistical test called the Hopkins test [39].
Clustering tendency is well know concept in the cluster analysis
literature and deals with the problem of determining the pres-
ence or absence of a clustering structure in a data set [44, 100].
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Figure 2: Local PSO population’s positions after 1, 5, 10, and 20 generations

Figure 3: local PSO population’s best personal positions after 1, 5, 10, and 20
generations

The Hopkins test relies on the distances between the vec-
tors of the data setX = {xi , i = 1, 2, . . . ,NP}, i.e. the cur-
rent population and a number of vectors that are randomly
placed in the search space. More specifically, letX′ = {yi , i =
1, 2, . . . ,M},M ≪ NP, with typically M = 0.1 · NP, be a set
of vectors that are uniformly distributed in the search space. In
addition, letX1 ⊂ X be a set ofM randomly chosen vectors of
X. Letd j be the distance ofy j ∈ X′ to its closest vectorxc ∈ X1,

andδ j be the distance fromxc to its closest vector inX1 \ {xc}.
Then, the Hopkins statistic involves thek-th powers ofd j and
δ j and it is defined as follows [44, 100]:

h =

∑M
j=1 dk

j
∑M

j=1 dk
j +
∑M

j=1 δ
k
j

. (11)

This statistic compares the nearest neighbor distributionof the
points inX1 with that of the points inX′. When the datasetX
contains clusters, the distances between nearest neighborpoints
in X1 are expected, on the average, to be small. Consequently,
the values ofh are relatively large. Notice that large values of
h indicate the presence of a clustering structure in the dataset
X, while small values ofh indicate the presence of regularly

spaced points. A value around 0.5 indicates that the vectors of
the datasetX are randomly distributed over the search space.

In Figure 4, we illustrate the mean value of the H-measure
at each generation, obtained from 100 independent simulations
for the 30-dimensional versions of the first six functions ofthe
CEC’2008 Special Session on Large Scale Global Optimiza-
tion [96]. These benchmarks were chosen to investigate the
behavior of the PSO algorithm in many qualitatively different
problems. The function set includes shifted versions of twouni-
modal and four highly multimodal functions. Error bars around
the mean depict the standard deviation of the H-measure. Due
to the stochastic nature of H-measure, for every generationin
every simulation we calculate the H-measure value 100 times,
by considering different random solutions.

As shown, both the positions and the best personal positions
exhibit large H-measure values within the first 100 generations,
indicative of a strong clustering structure, even in these ini-
tial stages of the evolution. Also, the relative values of the H-
measure for the different positions indicate an ordering with re-
spect to their exploitation tendency. The best personal positions
appears to have an exploitative behavior, while the positions of
the swarm seems to exhibit more explorative nature.

In this work, we attempt to take advantage of this clustering
behavior. To this end, we propose to evolve the best personal
positions of the swarm with the Differential Evolution algo-
rithm. More specifically, after the evolution of a particle we
propose to additionally evolve the best personal positions, as
well. This will efficiently evolve the social and cognitive expe-
rience of the swarm, i.e. thememory-swarm, which has the po-
tential either to locate better regions around problem’s minima
or to rapidly exploit the regions of the already found minima.

4. The proposed framework

Motivated by the aforementioned PSO behavior and our find-
ings, it is possible to guide the evolution towards a global op-
timum without compromising the algorithm’s search dynamics
by evolving the best experience of the swarm (social and cog-
nitive) with an intelligent optimization procedure, such as the
Differential Evolution algorithm. In this section, we discuss
the main concepts behind the hybrid framework of the Particle
Swarm Optimization and the Differential Evolution algorithm.

To evolve the social and cognitive experience of a swarm we
can utilize several different subpopulations for the evolution-
ary process, e.g. the positions of the swarm, the best personal
positions of the swarm or both of them. Based on their spa-
tial positions the evolutionary process will either explore unex-
plored regions or exploit the already found ones. Here, we pro-
pose to use as population for the evolutionary process, the set
of the best personal experience of the swarm (memory-smarm),
i.e. both the social and the cognitive experience. Thereby,the
newly evolved positions will be the outcome of the best experi-
ence of the swarm, which will have the potential to either locate
better regions around problem’s minima or to rapidly exploit the
already found regions, and thus accelerate convergence.
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Figure 4: H-measure of the localχPSO for the six shifted benchmark functions

4.1. The algorithmic scheme

Let us define the best personal experience set (memory-
smarm) as Sp

g = {P1
g,P

2
g, . . . ,P

NP
g } containing the best per-

sonal position of each particle at theg-th time step (generation).
Hence, after each time step of the PSO algorithm, we apply one
DE step to the particles in theSp

g set. Specifically, the three
main DE evolution steps (mutation, recombination, and selec-
tion) are applied to the best personal positions. In the muta-
tion procedure one of the aforementioned mutation strategies
(Eqs. (4)–(9)) is utilized. Afterwards, we utilize a one-to-one
tournament selection between the previous best position and the
evolved one, i.e. if the resulting new best position is fitterthan
the old one then it is accepted for the next generation; otherwise
the old best position is retained in theSp

g set. It is worth noting
that the one-to-one tournament selection is naturally applied in
the proposed framework, since it is the selection procedureof
the original DE algorithm. A detailed algorithmic scheme of
the proposed approach which particular utilizes the canonical
PSO variant with a ring neighborhood topology along with the
DE/rand/1/bin strategy for evolving the best personal memory
(PSO:DE:rand/1/bin) is illustrated in Algorithm 1.

Focusing on the algorithmic design of the proposed frame-
work, one can easily observe that, the proposed framework im-
plements two main interacting modules on theexplorer-swarm,
as well as on thememory-swarm. PSO algorithm is executed
with its classical structure, in an attempt to efficiently explore
the search space and in parallel to focus on the most promising
regions of the search space. Subsequently, DE operates only
on the “good” experience that have been explored until the cur-
rent step, i.e. thememory-swarm, aiming to effectively guide
the algorithm towards the search of the global optimum. Notice
that DE does not necessarily act as a “local search” procedure

as in Memetic Algorithms [36, 48], since it is a global search
algorithm and has the potential not only to focus the search on
particular regions, but also to explore unexplored regionsof the
search space. In detail, as illustrated in the Algorithm 1, the
explorer-swarmof PSO is dedicated to the global search part of
the framework, while the DE algorithm has a two-fold role in
the framework. By evolving the memory of the swarm, on the
early stages of evolution DE helps the evolutionary processto
potentially locate better unexplored regions of the problem at
hand, while at the latter stages of evolution focuses the search
on the most promising explored regions. It is evident that new
hybrids with either a similar design or an entirely new one can
be produced by giving emphasis in the algorithmic design mod-
eling process, and use either bottom–up or top–down design
methodologies, e.g. the algorithmic procedure proposed in[40].

Moreover, as illustrated in Algorithm 1, it should be noticed
that the total computational cost of the proposed framework,
in terms of function evaluations, includes the function evalua-
tions of both PSO (PSOFEs) and DE (DEFEs) algorithms. Thus,
the total amount of function evaluations equals to: TotalFE =

PSOFEs+ DEFEs. The only overhead of the resulting scheme is
the operations of the applied algorithm to evolve thememory-
swarmpositions, i.e. in PSO:DE/rand/1/bin scheme the over-
head depends only, (in terms of operations and not function
evaluations), on the operations made by DE/rand/1/bin scheme
on the personal best positions. As stated in the experimental
results, for our implementation without any optimized source
code, this overhead is on average at most 4% for the majority of
the tested DE mutation strategies (please refer to Section 5.1.1).
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Algorithm 1 The proposed approach PSO:DE:rand/1/bin: the local
PSO version algorithmic scheme utilizing a ring topology along with
the DE/rand/1/bin algorithm for evolving the best personalexperience

1: /* Initialize particles in the swarm: Sg=0 = {X1
g=0,X

2
g=0, . . . ,x

NP
g=0},

uniformly in the optimization search hyper-rectangle [L,U], */
2: for i = 1 to NPdo
3: for j = 1 to D do
4: Xi, j

g=0 = L j + randj (0,1) · (U j − L j)
5: end for
6: Evaluate ParticleXi

g=0
7: end for
8: for each time stepg (generation) do
9: for each particlei in the swarmdo

10: /* Update the position and the velocityof the i-th particle:
*/

11: for j = 1 to D do

12: Vi, j
g+1 = χ

(

Vi, j
g + c1r1

(

Pi, j
g − Xi, j

g
)

+ c2r2
(

Pbesti , j
g − Xi, j

g
)

)

,

13: Xi, j
g+1 = Xi, j

g + Vi, j
g+1.

14: end for
15: Calculate the fitness value,f (Xi

g+1), of the i-th particle.
16: /* Update cognitive experience: */
17: if f (Xi

g+1) < f (Pi
g) then

18: Pi
g = Xi

g+1
19: end if
20: end for
21: /* Update social experience:*/
22: for each particlei in the swarmdo
23: for each neighborXn

g+1 of the i-th particledo

24: if f (Pi
g+1) < f (Pbesti

g ) then

25: Pbesti
g+1 = Pi

g+1
26: end if
27: end for
28: end for
29: /* Evolve social and cognitive experience:{Evolve Pi

g utiliz-
ing one DE step inSp

t */}
30: for eachPi

g in theSp
g do

31: Select uniformly random integersr1, r2, r3 ∈ {1,2, . . . ,NP} \
{i}

32: /* Mutate Pi
g and generate the mutant vectorvi

g :*/
33: for j = 1 to D do
34: vi, j

g = Pr1, j
g + F(Pr2, j

g − Pr3, j
g ),

35: end for
36: /* Recombinethe mutant vectorvi

g: */
37: jrand = a uniformly distributed random integer∈ {1,2, . . . ,

D}
38: for j = 1 to D do

39: ui, j
g =

{

vi, j
g , if (randi, j (0,1) 6 CRor j = jrand),

Pi, j
g , otherwise,

40: end for
41: Calculate the fitness value,f (ui

g) of the trial vectorui
g.

42: /* Update thePi
g through: */

43: if f (ui
g) < f (Pi

g) then
44: Pi

g+1 = ui
g

45: else
46: Pi

g+1 = Pi
g

47: end if
48: end for
49: end for

4.2. Discussion on the hybridization of the PSO and the DE
algorithms

The experimental results indicate that the proposed evolu-
tionary hybrid framework assists both exploratory and exploita-
tive behavior of the PSO algorithm. The evolution of the per-
sonal experience will initially promote the exploration ofthe
personal experience space, since the personal experience is dis-
tributed almost randomly in the search space, while in the later
time steps, where the personal bests have been gathered in the
vicinity of local/global minima, will promote exploitation of the
gathered experience. The proposed framework does not affect
the main operations of PSO and can be directly applied to any
PSO variant. According to our study, the proposed framework
may result in great performance gains.

The hybrid PSO/DE algorithmic schemes can be classified
using the notation PSO:DE/base/num/cross. PSO depicts to the
PSO variant which will be used as the main PSO algorithm,
while the DE/base/num/crossnotation corresponds to the ap-
plied DE mutation strategy [17, 27, 83]. In detail,baseindi-
cates the base individual of the applied DE mutation strategy,
numdepicts the number of differences between individuals that
are used to perturb the base individual, andcrossstands for the
crossover type utilized by the mutation strategy, i.e.expfor ex-
ponential andbin for binomial [17, 27, 83]. In this study, we
always employ binomial crossover in the DE mutation strate-
gies, and thus we exclude thecrosspart to simplify the nota-
tion. For example, the notationχPSO:DE/rand/1 represents the
hybrid scheme that utilizes as the main PSO variant, the PSO
with constriction factor (χPSO) and incorporates the DE/rand/1
mutation strategy to evolve its social and cognitive experience.

In general, the evolutionary process is a very efficient pro-
cedure, but it demands a high number of function evaluations
to effectively converge to an optimum. The incorporation of
an evolutionary algorithm in each evolution step may resultin
an increase of the required function evaluations. Thus, in cases
where the function evaluations budget is limited, one can evolve
only some best personal positions of the swarm in each gener-
ation. Several strategies can be applied to select which indi-
viduals should be evolved, such as evolve only the stagnated
personal experience, or only the improved experience, or in-
corporate a probabilistically rule for the evolution. Somepre-
liminary results have been presented in [25], where we have
evolved only the best personal position that have been changed
(improved) during the previous time step and may evolve to an
even better position. Nevertheless, this strategy is not always
the best one, since it depends on the evolution phase of the al-
gorithm and the problem at hand. Thus, we propose to evolve
all best personal positions at each time step, since the extensive
experimental results presented in the next section, suggest that
this procedure exhibits great performance gains.

Another notable observation is that it is not obligatory to
evolve the personal experience setSt

p using the Differential
Evolution algorithm. Any efficient Evolutionary Algorithmcan
be applied. In initial experiments, we have utilized both lo-
cal and global versions of the canonical PSO to evolve theSt

p
set. However, the results were not very promising and experi-
ments on this direction were abandoned. It seems that utilizing
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methodologies with the same dynamics cannot provide signifi-
cant performance gains. Such behavior has not been observed
for the first time. For example, in [73], the authors have suc-
cessfully evolved PSO control parameters using the DE algo-
rithm, but when they tried to evolve the PSO parameters using
the PSO algorithm the results were worse. This observation
constitutes a very interesting research field for the evolutionary
computing community, but it is not the main objective of the
current work. We intent to study this phenomenon in a future
work.

4.3. Discussion on rotation sensitivity and stagnation

In general hybridization approaches try to integrate several
components,building blocks, within a general framework, in
an attempt to combine their good characteristics and produce a
more effective scheme. Nevertheless, we should always have
in mind the deficiencies of each component and their impact
on the resulting scheme. To this end, in this section we will
briefly describe some aspects of the considered PSO and DE
algorithms, that the interested reader should be aware of aswell
as how they might influence the proposed framework.

Firstly, it should be noticed that both PSO and DE algorithms
suffer from two notable biases, they tend to perform very well
when the optimum solution lies on or near the origin of the
optimization search space (origin biased), as well as when the
optimum solutions are either parallel to axis, or on the diagonal
of the optimization search space (rotation sensitive). Thus, they
operate better on separable, non-shifted and non-rotated land-
scapes with the optimum solution on, or near the origin of the
optimization search space. On contrary, both DE and PSO en-
counter difficulties when handling non-separable, rotatedland-
scapes or problems with shifted optima positions.

In the case of the PSO algorithm the responsible procedure
is the position and velocity update rule that utilizes a dimen-
sion by dimension update [58, 91]. An exposure of the origin-
bias has been made in [58], in which two measures have been
used to detect origin-seeking behavior; the region scalingand
the center offset technique. Their experiments revealed that re-
gion scaling is an effective but not always sufficient test tode-
tect this bias, while the center offset technique is more effective
since it exposes cases that are not otherwise visible. Addition-
ally, Spearset al. [58], showed that the rotational variance is
related to the origin and axis bias of the PSO algorithm. Based
on these observations they produced landscapes with specific
characteristics that expose the performance ability of PSOto
tackle them. In turn, an analysis on the impact of invariance
in search of the PSO and the CMA-ES algorithms has been
made in [34]. Through a thorough experimental investigation
the authors argue that the incorporation of invariant character-
istics, like rotational invariance, in an algorithmic scheme are
desirable, because they increase the predictive power of perfor-
mance results by inducing problem equivalence classes. The
dimension by dimension update rule has been modified in the
Standard PSO 2011 (SPSO 2011) [11], while other method-
ologies can been used to tackle the aforementioned biases, e.g.
adaptive encoding [33].

In the case of the DE algorithm, the responsibility falls on
the limited amount of DE search moves [41, 42, 83, 94]. The
vector–wise mutation scheme produces a limited amount of off-
spring, which strongly depends on the population size and the
mutation factor value. In turn, the crossover operation essen-
tially introduces sufficient diversity, but lacks the rotationally
invariant property. Suttonet al.[94] observed that DE performs
poorly on non-separable landscapes due to inefficient exploita-
tion during the differential mutation phase. They exploredtwo
hypotheses regarding the crossover/recombination rate values:
low values can exploit the separability of a landscape, while
high values produce the desired rotationally invariant property
which strongly depends on the differential mutation step. Thus,
to efficiently handle non-separable landscapes, DE has to de-
pend mostly on the mutation operation. In addition, settingthe
recombination rate equal to unity is not recommended, sinceit
reduces the number of trial vectors which may result instagna-
tion [50]. The authors handled the aforementioned effects by
imposing selective pressure through rank-based mutations[94].
Kenneth Price introduced in [82] a rotationally invariant DE
algorithm, which eliminates drift bias from its trial vector gen-
erating function by projecting randomly chosen vector differ-
ences along lines of recombination. In addition, the aforemen-
tioned effects have been tackled in [41, 42] by introducing the
combinatorial sampling in DE, that provides a similar num-
ber of samples as crossover, without being biased towards the
coordinate axes of the considered optimization search space.
Thus, it increases the sampling diversity and is capable of tack-
ling non-separable landscapes in high dimensional spaces even
though the resulting scheme is not a strict rotationally invariant
algorithm.

Additionally to therotation sensitivity, another aspect that
has to be taken into account is the risk ofstagnation[50].
Stagnationis the undesired phase in which, as the optimiza-
tion procedure progress and the population of the considered
methodology remains diverse, the optimum seeking procedure
stagnates before finding a globally optimum solution [50].
As mentioned previously,stagnationin DE occurs when it
does not manage to improve upon any solution of its pop-
ulation for a extended number of evolution steps, i.e. pro-
duce a limited amount of exploratory moves. To improve
the DE algorithm, several countermeasures have been consid-
ered againststagnation, with schemes/techniques that produce
a randomization in its search operations to increase the amount
of potential exploration moves and help the optimum seeking
procedure to continue, e.g. the dither and jitter scale-factor
schemes [83], multiple populations in parallel or distributed
systems [63, 97, 103, 104, 109], sophisticated randomization
schemes with adaptive of self-adaptive frameworks that effi-
ciently change DE’s control parameters [7, 31, 84, 88, 112],
algorithmic adaptation of the scale-factor by means of local
search [64, 65], and scale-factor dynamics and inheritancein
multiple populations [63, 103, 104] amongst others.
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5. Experimental Results

In this section we perform an extensive experimental evalu-
ation of the proposed framework. We employ twenty five high
dimensional benchmark functions from the CEC 2005 bench-
mark suite on Real-Parameter Optimization [93]. More specif-
ically, based on their characteristics, the CEC 2005 benchmark
set functions can be divided into the following four classes:
functions f1 − f5 are unimodal,f6 − f12 are basic multimodal
functions, f13 and f14 are expanded multimodal functions, and
f15− f25 are hybrid compositions of functions with a large num-
ber of local minima. A thorough description of this test set can
be found in [93].

To provide a comprehensive comparison and highlight the
different aspects of the proposed framework, we divide the pre-
sentation of the experimental results into the following subsec-
tions. We first incorporate the proposed framework into the
classic version of PSO with constriction factor and demonstrate
its main behavior (Section 5.1). Subsequently, we discuss the
suitability of the proposed framework for five other well-known
and widely used PSO variants (Section 5.2), and for four popu-
lar DE algorithms (Section 5.3). Finally, we conclude with an
overall performance comparison among all the considered PSO
variants (Section 5.4).

5.1. HybridizingχPSO using the DE algorithm

In this section we hybridize the originalχPSO algorithm
with the Differential Evolution algorithm by incorporating six
well-known DE mutation strategies with different characteris-
tics. To maintain a reliable and fair comparison, we employ the
same parameter settings for all PSO variants. Additionally, the
swarms of all PSO variants, were initialized using a uniform
random number distribution with the same random seeds.

In more detail, the parameter settings used are:

a. Swarm/population size:NP= D,
b. PSO topology:ring with neighborhood radiusnr = 2,
c. PSO parameters:φ = 4.1, χ = 0.72984, andc1 = c2 =

2.05 [6, 12, 74, 77],
d. DE parameters: binomial crossover withF = 0.5,CR =

0.9 [7, 8, 17, 27, 55, 92].

To evaluate the performance of the PSO variants we will
use thesolution error measure, or simply error, defined as
f (x′)− f (x⋆),wherex⋆ is the global optimum of the benchmark
function andx′ is the best solution achieved after 104 · D func-
tion evaluations [93], whereD is the dimensionality of the prob-
lem at hand. Each PSO variant was executed independently 100
times to obtain an estimation of the median (Median), the mean
solution error (Mean), and its standard deviation (St.D.). For
each pair of the original PSO variant and its corresponding hy-
brid DE-based variant, we use boldface font to indicate the best
performance in terms of median solution error. To evaluate the
statistical significance of the observed performance differences,
we apply a two-sided Wilcoxon rank sum test between the orig-
inal PSO variant and their hybrid DE-based variants. The null
hypothesis in each test is that the samples compared are inde-
pendent samples from identical continuous distributions with

equal medians. When the null hypothesis is rejected at the 5%
significance level, we mark with “+” the cases where the hybrid
DE-based variant exhibits superior performance and with “–”
when it exhibits inferior performance. When the performance
difference is not statistically significant, we mark with “=”. At
the bottom of each table, for each pair, we also show the to-
tal number of the aforementioned statistical significant cases
(+/=/–).

Based on the characteristics of the six DE mutation strate-
gies (see Section 2.2), two groups can be distinguished. The
first group includes mutation strategies with explorative dynam-
ics [27], e.g. DE/rand/1, DE/rand/2, and TDE/rand/1, whilethe
second group includes more exploitative mutation strategies,
e.g. DE/best/1, DE/cur-to-best/1, and DE/best/2. To this end,
Table 1 reports the results on the 30 and 50–dimensional ver-
sions of the CEC 2005 benchmark set for the explorative DE
mutation strategies. One can clearly observe that the incorpo-
ration of the explorative DE mutation strategies in theχPSO
algorithm yields either significant performance gains or oper-
ates similarly, with theχPSO:DE/rand/1 andχPSO:TDE/rand/1
variants to produce the best results.

More specifically, all hybrid PSO variants exhibit substantial
performance improvements in all unimodal functions (f1 − f5),
in almost all multimodal functions (f6, f9 − f12), in the ex-
panded functionf13 and in the majority of the hybrid com-
position multimodal functions. On the other hand, the orig-
inal χPSO algorithm operates better only on two multimodal
functions f7 and f8, the expanded functionf14 and on some
30–dimensional versions of the hybrid composition multimodal
functions (f18 − f20, f22, and f25). In the latter cases, it
has to be noted that the three proposed hybrid PSO variants
(χPSO:DE/rand/1,χPSO:DE/rand/2, andχPSO:TDE/rand/1)
demonstrate significant performance improvements when the
dimensionality increases, i.e. in the 50–dimensional versions
of the aforementioned hybrid composition functions. Addition-
ally, we can observe that in many benchmarks functions, the
proposed hybrids with the explorative DE mutation strategies,
provide the best results, between theχPSO and all the other
hybrids. Specifically,χPSO:TDE/rand/1 performs best in 15,
χPSO:DE/rand/1 in 10, andχPSO:DE/rand/1 in 9 out of 50
benchmark functions.

Table 2 depicts the results of the hybrid PSO variants with ex-
ploitative DE mutation strategies on the 30 and 50–dimensional
versions of the CEC 2005 benchmark set. In these cases, the
performance gains of the hybrids is less prominent. Gener-
ally speaking, based on the characteristics of the employedDE
mutation strategy, we can observe that the more exploitative
a mutation strategy is, the more it’s performance deteriorates.
More specifically,χPSO:DE/best/1 demonstrates the worst per-
formance between all hybrid PSO variants, since it deteriorates
the performance of the originalχPSO algorithm in 17 out of
50 cases.χPSO:DE/best/1 results in significant improvements
only in three unimodal functions (f3 − f5), in four multimodal
( f9 − f12), and in some specific cases of the hybrid composi-
tion functions, i.e. in the 30–dimensional cases off16, f21, and
f23, and the 50–dimensional cases off17 and f24. Therefore,
χPSO:DE/cur-to-best/1 demonstrates significant performance
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Table 1: Error values of the original local version of theχPSO algorithm and their corresponding explorative hybrid DE variants on the 30 and 50–dimensional CEC
2005 benchmark functions

χPSO χPSO:DE/rand/1 χPSO:DE/rand/2 χPSO:TDE/rand/1
fi D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
f1 30 5.328e+00 9.657e+00 1.233e+01 0.000e+00 6.248e-02 2.184e-01 + 0.000e+00 5.226e-01 2.084e+00 + 0.000e+001.940e+00 7.555e+00 +

50 0.000e+00 8.730e+01 1.950e+02 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 +
f2 30 0.000e+00 1.573e+01 8.112e+01 0.000e+00 4.938e-02 2.745e-01 + 0.000e+00 1.088e-01 6.320e-01 = 0.000e+00 7.754e-02 4.013e-01 =

50 2.334e+02 7.774e+02 1.806e+03 2.000e-03 3.040e-03 3.037e-03 + 6.060e-01 7.955e-01 8.022e-01 + 1.100e-025.807e+00 3.870e+01 +
f3 30 3.491e+06 1.020e+07 1.336e+07 6.060e+058.767e+05 6.931e+05 + 7.794e+058.974e+05 6.196e+05 + 7.484e+058.967e+05 6.968e+05 +

50 1.852e+07 1.988e+07 1.266e+07 1.173e+061.227e+06 4.163e+05 + 4.949e+065.680e+06 2.337e+06 + 1.717e+061.783e+06 7.190e+05 +
f4 30 1.555e+03 1.834e+03 1.088e+03 4.967e+012.301e+02 5.235e+02 + 1.876e+011.496e+02 3.440e+02 + 2.228e+011.011e+02 2.212e+02 +

50 2.813e+04 2.760e+04 1.007e+04 1.066e+026.108e+02 2.986e+03 + 4.987e+026.193e+02 5.710e+02 + 4.273e+027.573e+02 1.139e+03 +
f5 30 7.886e+03 8.101e+03 1.210e+03 4.754e+034.818e+03 1.086e+03 + 4.757e+034.995e+03 1.185e+03 + 4.792e+034.932e+03 9.340e+02 +

50 1.127e+04 1.117e+04 1.975e+03 3.226e+033.249e+03 7.024e+02 + 2.785e+032.782e+03 7.664e+02 + 4.193e+034.309e+03 9.041e+02 +
f6 30 3.602e+02 1.170e+03 1.790e+03 8.258e+011.144e+04 6.378e+04 + 1.351e+026.497e+02 1.749e+03 + 1.777e+021.739e+03 7.807e+03 +

50 3.979e+01 6.370e+06 2.129e+07 3.759e+016.101e+01 5.315e+01 = 1.839e+013.034e+01 3.701e+01 + 3.965e+015.108e+01 2.576e+01 =
f7 30 6.788e+036.780e+03 1.291e+02 7.789e+03 7.774e+03 2.745e+02 – 7.940e+03 7.896e+03 2.389e+02 – 7.805e+03 7.759e+03 2.465e+02 –

50 6.158e+03 6.154e+03 7.416e+01 6.085e+036.092e+03 8.772e+01 + 6.080e+036.075e+03 5.666e+01 + 6.072e+036.069e+03 6.803e+01 +
f8 30 2.090e+012.090e+01 5.354e-02 2.093e+01 2.092e+01 5.683e-02 = 2.092e+01 2.092e+01 6.350e-02 = 2.093e+01 2.093e+01 5.436e-02 –

50 2.114e+012.113e+01 4.368e-02 2.116e+01 2.115e+01 4.166e-02 – 2.116e+01 2.116e+01 3.032e-02 – 2.115e+01 2.115e+01 4.195e-02 –
f9 30 6.517e+01 6.543e+01 1.239e+01 4.875e+015.034e+01 1.306e+01 + 4.527e+014.740e+01 1.184e+01 + 4.726e+014.762e+01 1.176e+01 +

50 1.782e+02 1.765e+02 2.498e+01 8.985e+019.293e+01 2.582e+01 + 1.062e+021.056e+02 2.941e+01 + 8.824e+018.775e+01 2.017e+01 +
f10 30 8.756e+01 8.665e+01 1.850e+01 4.577e+015.245e+01 2.654e+01 + 4.975e+015.765e+01 3.513e+01 + 4.527e+015.233e+01 3.107e+01 +

50 1.837e+02 1.816e+02 3.686e+01 8.434e+018.907e+01 2.267e+01 + 9.800e+019.936e+01 2.329e+01 + 8.094e+018.271e+01 1.779e+01 +
f11 30 2.802e+01 2.797e+01 2.487e+00 2.206e+012.252e+01 5.278e+00 + 1.998e+011.997e+01 4.524e+00 + 1.930e+012.016e+01 5.226e+00 +

50 5.874e+01 5.817e+01 3.433e+00 5.492e+015.314e+01 8.229e+00 + 6.167e+01 6.121e+01 5.701e+00 – 5.493e+015.169e+01 9.416e+00 +
f12 30 1.128e+04 1.872e+04 2.137e+04 3.020e+034.965e+03 5.692e+03 + 4.754e+035.489e+03 4.957e+03 + 2.000e+034.821e+03 7.071e+03 +

50 2.896e+05 3.293e+05 1.922e+05 1.070e+051.294e+05 1.032e+05 + 1.535e+052.116e+05 1.669e+05 + 7.944e+041.152e+05 1.289e+05 +
f13 30 5.389e+00 5.691e+00 1.775e+00 3.355e+003.324e+00 1.011e+00 + 3.352e+003.483e+00 1.055e+00 + 3.168e+003.127e+00 7.838e-01 +

50 1.471e+01 1.543e+01 4.475e+00 7.238e+007.356e+00 1.734e+00 + 7.797e+007.913e+00 1.690e+00 + 7.363e+007.451e+00 1.923e+00 +
f14 30 1.211e+011.205e+01 4.311e-01 1.222e+01 1.217e+01 4.283e-01 = 1.217e+01 1.219e+01 4.220e-01 = 1.237e+01 1.229e+01 4.841e-01 –

50 2.193e+01 2.190e+01 4.937e-01 2.190e+012.188e+01 4.654e-01 = 2.211e+01 2.201e+01 5.579e-01 = 2.197e+01 2.194e+01 5.245e-01 =
f15 30 4.036e+02 3.929e+02 8.708e+01 4.006e+023.825e+02 7.684e+01 = 4.000e+023.793e+02 7.077e+01 = 4.023e+023.981e+02 7.360e+01 =

50 4.513e+02 4.198e+02 8.718e+01 2.513e+022.712e+02 7.002e+01 + 2.553e+022.785e+02 7.466e+01 + 2.293e+022.669e+02 8.084e+01 +
f16 30 1.512e+02 1.867e+02 1.055e+02 7.447e+011.298e+02 1.120e+02 + 7.839e+011.669e+02 1.525e+02 + 6.926e+011.307e+02 1.246e+02 +

50 1.679e+02 1.872e+02 5.268e+01 8.700e+011.051e+02 5.689e+01 + 9.736e+011.061e+02 3.337e+01 + 7.893e+019.170e+01 3.933e+01 +
f17 30 1.881e+02 2.136e+02 8.914e+01 1.996e+02 2.074e+02 1.239e+02 = 9.286e+011.652e+02 1.267e+02 + 1.867e+021.930e+02 1.397e+02 =

50 2.834e+02 2.890e+02 7.083e+01 8.915e+011.215e+02 7.626e+01 + 1.078e+021.371e+02 8.159e+01 + 8.457e+011.075e+02 7.727e+01 +
f18 30 9.746e+029.388e+02 7.088e+01 9.796e+02 9.550e+02 7.632e+01 = 9.893e+02 9.827e+02 4.508e+01 – 9.802e+02 9.361e+02 8.747e+01 =

50 9.376e+02 9.392e+02 8.816e+00 9.174e+029.193e+02 5.061e+00 + 9.179e+029.215e+02 8.786e+00 + 9.215e+029.225e+02 6.284e+00 +
f19 30 9.761e+029.355e+02 6.813e+01 9.903e+02 9.658e+02 6.961e+01 – 9.766e+02 9.491e+02 8.101e+01 = 9.869e+02 9.621e+02 7.957e+01 –

50 9.346e+02 9.383e+02 1.234e+01 9.206e+029.227e+02 9.796e+00 + 9.186e+029.207e+02 7.509e+00 + 9.208e+029.218e+02 6.888e+00 +
f20 30 9.756e+029.553e+02 5.665e+01 9.921e+02 9.703e+02 6.754e+01 – 9.836e+02 9.469e+02 8.077e+01 = 9.958e+02 9.814e+02 4.994e+01 –

50 9.371e+02 9.393e+02 1.197e+01 9.211e+029.231e+02 8.751e+00 + 9.171e+029.196e+02 6.372e+00 + 9.207e+029.205e+02 4.884e+00 +
f21 30 5.098e+02 5.893e+02 2.082e+02 5.001e+026.357e+02 2.500e+02 + 5.001e+025.857e+02 2.048e+02 + 5.001e+025.984e+02 1.953e+02 +

50 1.018e+03 1.019e+03 3.643e+00 1.010e+031.011e+03 3.544e+00 + 1.012e+031.013e+03 4.729e+00 + 1.010e+031.010e+03 3.471e+00 +
f22 30 1.024e+031.026e+03 2.429e+01 1.029e+03 1.030e+03 3.078e+01 = 1.039e+03 1.035e+03 2.668e+01 = 1.029e+03 1.028e+03 3.003e+01 =

50 9.095e+02 9.149e+02 2.018e+01 8.982e+029.024e+02 1.424e+01 + 8.991e+028.997e+02 1.053e+01 + 8.930e+028.976e+02 1.478e+01 +
f23 30 5.068e+02 5.277e+02 1.018e+02 5.003e+025.743e+02 2.029e+02 + 5.000e+025.601e+02 1.689e+02 + 5.002e+025.986e+02 2.213e+02 +

50 1.019e+03 1.019e+03 3.335e+00 1.010e+031.011e+03 3.540e+00 + 1.011e+031.011e+03 3.357e+00 + 1.009e+031.010e+03 4.263e+00 +
f24 30 2.000e+022.000e+02 0.000e+00 2.000e+022.000e+02 0.000e+00 = 2.000e+022.000e+02 0.000e+00 = 2.000e+022.000e+02 0.000e+00 =

50 1.029e+03 1.018e+03 5.740e+01 1.018e+031.002e+03 1.158e+02 + 1.024e+031.024e+03 4.061e+00 + 1.019e+039.861e+02 1.621e+02 +
f25 30 1.750e+031.750e+03 7.509e+00 1.763e+03 1.761e+03 1.350e+01 – 1.762e+03 1.760e+03 1.075e+01 – 1.764e+03 1.762e+03 1.169e+01 –

50 1.682e+03 1.682e+03 5.316e+00 1.671e+031.671e+03 4.504e+00 + 1.672e+031.673e+03 5.690e+00 + 1.671e+031.671e+03 4.567e+00 +
Total number of (+/–/=): (36/5/9) Total number of (+/–/=): (36/5/9) Total number of (+/–/=): (35/7/8)

difference in comparison to the originalχPSO algorithm in
three unimodal functions (f2− f5), in four multimodal (f9− f12),
and in some hybrid composition functions. This behavior, to-
tally changes in the case ofχPSO:DE/best/2 hybrid. The in-
corporation of a second difference vector in the DE/best/2 mu-
tation strategy, enhances the exploratory power of the mutation
procedure, which significantly improves the performance ofthe
χPSO algorithm. TherebyχPSO:DE/best/2 is statistically bet-
ter thanχPSO in 35 out of 50 benchmark functions. It has a
great impact on almost all unimodal functions (f1 − f5), three
multimodal and one expanded function (f9 − f13), as well as on
several hybrid composition functions (f15 − f17, and f21 − f24).

In previous works, we have observed that DE mutation
strategies exhibit different behavior based on their explo-
rative/exploitative dynamics. Exploitative strategies rapidly
gather all the individuals to the basin of attraction of a single

minimum, whereas explorative strategies tend to spread thein-
dividuals around many minima [23, 27, 98]. Thereby, the afore-
mentioned behavior of the hybrid PSO variants was expected.
The application of an exploitative mutation strategy decreases
the power of the cognitive and social experience, resultingin a
more exploitative scheme, that generally performs worse than
the original PSO variant. On the other hand, as it is validated
by the aforementioned experimental results, for the majority of
the considered benchmark functions, the incorporation of an ex-
plorative DE mutation strategy yields hybrid PSO variants with
significant performance gains. Thus, its incorporation to aPSO
variant is highly recommended.

Furthermore, it is very interesting to evaluate the impact of
the proposed framework in a global PSO variant, since the
global version of a PSO algorithm utilizes a fully connected
topology, which leads to a very exploitative optimization algo-
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Table 2: Error values of the original local version of theχPSO algorithm and their corresponding exploitative hybridDE variants on the 30 and 50–dimensional
CEC 2005 benchmark functions

χPSO χPSO:DE/best/1 χPSO:DE/current-to-best/1 χPSO:DE/best/2
fi D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
f1 30 5.328e+00 9.657e+00 1.233e+01 0.000e+005.506e+00 2.754e+01 + 0.000e+008.049e+00 4.705e+01 + 0.000e+00 7.260e-01 2.968e+00 +

50 0.000e+008.730e+01 1.950e+02 1.308e+03 2.029e+03 2.060e+03 – 0.000e+00 8.334e+01 3.453e+02 – 0.000e+00 2.657e+02 5.696e+02 =
f2 30 0.000e+00 1.573e+01 8.112e+01 0.000e+00 2.880e-02 1.115e-01 = 0.000e+00 7.640e-03 3.400e-02 = 0.000e+00 2.830e-01 1.228e+00 =

50 2.334e+02 7.774e+02 1.806e+03 7.983e+03 1.027e+04 8.913e+03 – 1.101e+021.116e+03 2.890e+03 + 2.736e+02 1.393e+03 2.228e+03 =
f3 30 3.491e+06 1.020e+07 1.336e+07 3.633e+056.505e+05 6.267e+05 + 6.205e+058.280e+05 6.470e+05 + 6.527e+058.152e+05 6.276e+05 +

50 1.852e+07 1.988e+07 1.266e+07 9.060e+061.780e+07 2.068e+07 + 2.388e+064.404e+06 5.730e+06 + 4.881e+067.594e+06 8.338e+06 +
f4 30 1.555e+03 1.834e+03 1.088e+03 3.261e+011.974e+02 4.063e+02 + 1.352e+011.170e+02 2.025e+02 + 4.239e+001.430e+02 3.571e+02 +

50 2.813e+04 2.760e+04 1.007e+04 2.189e+042.284e+04 1.033e+04 + 9.155e+039.733e+03 4.889e+03 + 6.808e+022.724e+03 5.027e+03 +
f5 30 7.886e+03 8.101e+03 1.210e+03 4.425e+034.610e+03 1.368e+03 + 4.656e+034.787e+03 1.118e+03 + 5.023e+034.958e+03 1.180e+03 +

50 1.127e+04 1.117e+04 1.975e+03 1.115e+041.082e+04 2.528e+03 = 1.102e+041.093e+04 2.220e+03 = 5.427e+035.629e+03 1.761e+03 +
f6 30 3.602e+02 1.170e+03 1.790e+03 1.331e+022.586e+04 1.337e+05 + 8.769e+012.626e+02 6.543e+02 + 7.841e+019.781e+03 6.693e+04 +

50 3.979e+016.370e+06 2.129e+07 2.796e+07 3.507e+08 9.003e+08 – 8.359e+01 3.065e+07 1.246e+08 = 2.111e+02 2.022e+07 7.655e+07 –
f7 30 6.788e+036.780e+03 1.291e+02 7.860e+03 7.815e+03 2.495e+02 – 7.841e+03 7.835e+03 2.356e+02 – 7.853e+03 7.801e+03 2.926e+02 –

50 6.158e+03 6.154e+03 7.416e+01 6.150e+036.158e+03 1.550e+02 = 6.140e+036.123e+03 8.054e+01 = 6.062e+036.071e+03 1.173e+02 +
f8 30 2.090e+012.090e+01 5.354e-02 2.094e+01 2.092e+01 6.115e-02 = 2.093e+01 2.093e+01 5.664e-02 – 2.093e+01 2.092e+01 5.522e-02 =

50 2.114e+01 2.113e+01 4.368e-02 2.116e+01 2.115e+01 3.641e-02 – 2.114e+012.113e+01 4.199e-02 = 2.116e+01 2.115e+01 3.738e-02 –
f9 30 6.517e+01 6.543e+01 1.239e+01 5.074e+014.949e+01 1.373e+01 + 4.875e+014.975e+01 1.195e+01 + 4.477e+014.704e+01 1.074e+01 +

50 1.782e+02 1.765e+02 2.498e+01 1.697e+021.771e+02 3.791e+01 = 1.210e+021.193e+02 2.348e+01 + 1.258e+021.230e+02 2.747e+01 +
f10 30 8.756e+01 8.665e+01 1.850e+01 4.577e+015.536e+01 3.384e+01 + 5.174e+015.417e+01 1.838e+01 + 4.676e+015.486e+01 3.575e+01 +

50 1.837e+02 1.816e+02 3.686e+01 1.847e+02 1.890e+02 4.366e+01 = 1.451e+021.409e+02 3.244e+01 + 1.175e+021.193e+02 2.272e+01 +
f11 30 2.802e+01 2.797e+01 2.487e+00 1.929e+012.064e+01 5.435e+00 + 2.166e+012.209e+01 5.396e+00 + 2.253e+012.223e+01 4.757e+00 +

50 5.874e+01 5.817e+01 3.433e+00 4.889e+015.099e+01 6.702e+00 + 5.456e+015.341e+01 5.885e+00 + 5.266e+015.211e+01 7.780e+00 +
f12 30 1.128e+04 1.872e+04 2.137e+04 3.362e+034.627e+03 4.789e+03 + 2.404e+033.721e+03 3.491e+03 + 3.277e+035.759e+03 7.156e+03 +

50 2.896e+05 3.293e+05 1.922e+05 3.449e+05 4.970e+05 5.155e+05 = 1.101e+051.313e+05 1.101e+05 + 1.887e+052.154e+05 1.403e+05 +
f13 30 5.389e+00 5.691e+00 1.775e+00 3.120e+003.158e+00 8.580e-01 + 3.244e+003.302e+00 8.529e-01 + 3.242e+003.313e+00 9.144e-01 +

50 1.471e+01 1.543e+01 4.475e+00 2.499e+01 2.642e+01 9.929e+00 – 1.794e+01 2.002e+01 6.408e+00 – 1.025e+011.029e+01 2.643e+00 +
f14 30 1.211e+011.205e+01 4.311e-01 1.226e+01 1.220e+01 4.412e-01 = 1.222e+01 1.215e+01 4.916e-01 = 1.233e+01 1.226e+01 4.293e-01 –

50 2.193e+01 2.190e+01 4.937e-01 2.127e+012.111e+01 7.217e-01 + 2.138e+012.135e+01 5.359e-01 + 2.189e+012.185e+01 5.111e-01 =
f15 30 4.036e+02 3.929e+02 8.708e+01 4.000e+023.827e+02 6.628e+01 = 4.015e+023.821e+02 9.402e+01 = 4.010e+023.911e+02 6.197e+01 =

50 4.513e+02 4.198e+02 8.718e+01 5.540e+02 5.519e+02 7.497e+01 – 4.467e+024.519e+02 5.049e+01 = 4.378e+024.305e+02 6.778e+01 =
f16 30 1.512e+02 1.867e+02 1.055e+02 7.383e+011.337e+02 1.304e+02 + 7.875e+011.642e+02 1.584e+02 + 7.219e+011.334e+02 1.217e+02 +

50 1.679e+02 1.872e+02 5.268e+01 1.844e+02 2.283e+02 1.166e+02 = 1.286e+021.708e+02 1.124e+02 + 1.277e+021.806e+02 1.191e+02 +
f17 30 1.881e+02 2.136e+02 8.914e+01 1.982e+02 2.017e+02 1.403e+02 = 1.899e+02 2.022e+02 1.484e+02 = 1.489e+021.762e+02 1.285e+02 +

50 2.834e+02 2.890e+02 7.083e+01 1.944e+022.492e+02 1.261e+02 + 1.295e+021.667e+02 1.042e+02 + 1.127e+021.551e+02 1.104e+02 +
f18 30 9.746e+029.388e+02 7.088e+01 9.847e+02 9.613e+02 6.849e+01 – 9.855e+02 9.588e+02 7.691e+01 – 9.862e+02 9.555e+02 7.531e+01 –

50 9.376e+029.392e+02 8.816e+00 9.645e+02 9.696e+02 2.955e+01 – 9.556e+02 9.575e+02 2.042e+01 – 9.397e+02 9.426e+02 1.887e+01 =
f19 30 9.761e+029.355e+02 6.813e+01 9.950e+02 9.517e+02 8.768e+01 – 9.805e+02 9.393e+02 8.442e+01 = 9.774e+02 9.481e+02 8.170e+01 =

50 9.346e+029.383e+02 1.234e+01 9.690e+02 9.723e+02 2.407e+01 – 9.537e+02 9.600e+02 2.254e+01 – 9.373e+02 9.383e+02 1.320e+01 =
f20 30 9.756e+029.553e+02 5.665e+01 9.831e+02 9.355e+02 8.549e+01 = 9.839e+02 9.707e+02 5.447e+01 = 9.894e+02 9.693e+02 6.037e+01 –

50 9.371e+02 9.393e+02 1.197e+01 9.697e+02 9.737e+02 2.910e+01 – 9.540e+02 9.617e+02 2.803e+01 – 9.299e+029.343e+02 1.247e+01 +
f21 30 5.098e+02 5.893e+02 2.082e+02 5.000e+025.989e+02 2.303e+02 + 5.000e+025.472e+02 1.610e+02 + 5.001e+026.059e+02 2.324e+02 +

50 1.018e+03 1.019e+03 3.643e+00 1.025e+03 1.018e+03 8.232e+01 – 1.017e+039.813e+02 1.549e+02 = 1.016e+031.018e+03 7.491e+00 +
f22 30 1.024e+03 1.026e+03 2.429e+01 1.027e+03 1.031e+03 3.079e+01 = 1.030e+03 1.034e+03 3.300e+01 = 1.023e+031.031e+03 2.738e+01 =

50 9.095e+029.149e+02 2.018e+01 9.495e+02 9.523e+02 4.360e+01 – 9.406e+02 9.419e+02 3.157e+01 – 9.127e+02 9.227e+02 3.087e+01 =
f23 30 5.068e+02 5.277e+02 1.018e+02 5.000e+026.371e+02 2.553e+02 + 5.001e+025.912e+02 2.183e+02 + 5.006e+026.124e+02 2.429e+02 +

50 1.019e+03 1.019e+03 3.335e+00 1.025e+03 1.029e+03 6.805e+01 – 1.018e+039.967e+02 1.413e+02 = 1.016e+031.017e+03 5.825e+00 +
f24 30 2.000e+022.000e+02 0.000e+00 2.000e+022.000e+02 0.000e+00 = 2.000e+022.060e+02 4.243e+01 = 2.000e+022.000e+02 0.000e+00 =

50 1.029e+03 1.018e+03 5.740e+01 1.026e+031.042e+03 5.751e+01 + 1.019e+038.878e+02 2.391e+02 + 1.020e+031.022e+03 8.851e+00 +
f25 30 1.750e+031.750e+03 7.509e+00 1.760e+03 1.760e+03 1.187e+01 – 1.762e+03 1.762e+03 1.037e+01 – 1.760e+03 1.761e+03 1.070e+01 –

50 1.682e+03 1.682e+03 5.316e+00 1.686e+03 1.689e+03 1.273e+01 – 1.675e+031.677e+03 7.781e+00 + 1.677e+031.678e+03 8.306e+00 +
Total number of (+/–/=): (19/17/14) Total number of (+/–/=): (25/10/15) Total number of (+/–/=): (30/7/13)

rithm. Recall that the global version of a PSO algorithm in-
cludes the global best particle in its velocity update rule.

Initially, one can suppose that the incorporation of the pro-
posed framework, especially with an exploitative DE mutation
strategy, may result in a very inefficient PSO variant. Neverthe-
less, we have utilized the proposed hybridization framework in
the global version of theχPSO algorithm. The hybrid PSO vari-
ants with either explorative or exploitative DE mutation strate-
gies, exhibit either significant performance differences or op-
erates similarly for the majority of the benchmark functions.
Specifically, the performance of the globalχPSO variant has
been significantly enhanced in all unimodal (f1− f5), expanded
( f13 and f14), and hybrid composition functions (f15 − f25) and
in the majority of the multimodal functions. The performance
of the globalχPSO variant has been deteriorated by the pro-
posed framework, only inf7 and f8 functions. Therefore, the

hybridization of the global PSO version with any DE mutation
strategy is also highly recommended. Due to lack of space the
corresponding tables have been excluded from this paper, but
they will be provided to the interested reader upon request.

5.1.1. CPU time overhead of the proposed framework

To demonstrate the computational time overhead of the pro-
posed framework, we calculate the wall clock CPU time of the
PSO algorithm and the corresponding hybrid variants on each
benchmark function. Thereby, the computational time overhead
of a hybrid against a PSO algorithm on the benchmark function
f , Overhead(f ), can been calculated according to the following
formula:

Overhead(f ) =
PSO:DEtime( f ) − PSOtime( f )

PSOtime( f )
, (12)
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Figure 5: Computational time overhead of the proposed hybrid DE strategies
against theχPSO algorithm on the 30–dimensional versions (top) and the 50–
dimensional versions (bottom) of the CEC 2005 suite.

where PSOtime( f ) and PSO:DEtime( f ), indicate the mean value
of the wall clock CPU time measured, on the benchmark func-
tion f over the conducted simulations, for the PSO and the
PSO:DE hybrid algorithm respectively. As such, Figure 5 il-
lustrates the computational time overhead of the proposed hy-
brid DE strategies against theχPSO algorithm on the 30–
dimensional versions (top) and the 50–dimensional versions
(bottom) of the CEC 2005 suite. It can be clearly observed
that on average the computational time overhead is below 2%
and 4% for the majority of the proposed hybrids, over the 30–
dimensional and 50–dimensional versions of the considered
function suite, respectively. Only DE/best/2 exhibits an over-
head between 3% and 5% for some 30–dimensional benchmark
functions. Let us remind you that the implementation of the
proposed framework does not contain any source code opti-
mization, thus the computational time overhead could be fur-
ther reduced.

5.1.2. Statistical significance analysis of the HybridχPSO
Variants

To evaluate the statistical significance of the observed perfor-
mance differences, we additionally provide an extensive statis-
tical analysis [18, 30]. The analysis firstly includes statistical
test procedures that can rank the performance of a set ofk al-
gorithms and answer whether there is a significant deferencein
the performance of at least two of those algorithms. If there
is a significant difference, we can continue by applying a post-
hoc test analysis to determine in which cases the best perform-
ing algorithm exhibits a significant variation. The statistical
analysis ends with the application of the Empirical Cumulative
probability Distribution Function graph of the performance er-
ror (ECDF). ECDF graph demonstrates the performance of all
algorithms in all test cases and can be utilized as an overallper-
formance visualization statistic.

More specifically, we firstly utilize three procedures for test-
ing the differences between more than two related samples,
namely, the Friedman, the Aligned Friedman, and the Quade
tests [13, 18, 30, 89]. The Friedman test (Friedman two-way
analysis of variances by ranks) is a non-parametric multiple
comparisons test, which aims to detect significant differences
between the behavior of two or more population samples. It
answers if in a set ofk population samples, withk > 2, there
are at least two population samples with different median val-
ues. The null hypothesis states that all population sampleshave
equal medians, while the alternative hypothesis is defined as the
negation of the null hypothesis. The Aligned Friedman test is
a variation of the Friedman test, which utilizes aligned ranks to
handle intra-block effects in a population sample [13, 30, 89].
Finally, the Quade test is a variation of the Friedman test,
which takes into account the fact that some cases in the pop-
ulation sample may be more important than others (Friedman
test considers all cases to be equal in terms of importance) [30].
Thereby, the rankings computed by the Quade test could be
scaled depending on the differences observed in the samples.
Consequently, if there is a significant difference, we can con-
tinue by applying a post-hoc test analysis to determine in which
cases the best performing algorithm (control method) exhibits
a significant variation. Here, we utilize post-hoc tests with dif-
ferent abilities and characteristics [13, 18, 30, 89].

Finally, to provide a summarizing comparison of the im-
plemented algorithms on all benchmark functions, we utilize
the Empirical Cumulative probability Distribution Function
(ECDF) of the performance error values. Specifically, for an
algorithm A on a functionf , the error value (error) achieved
by A on function f is computed. Therefore, smaller values of
error correspond to better performance. TheECDF of errors
for an algorithm in a number of functionsnf is a cumulative
probability distribution function defined as:

ECDF(x) =
1
nf

nf
∑

i=1

I (errori 6 x),

whereI (·) is the indicator function. In other words, theECDF
measure captures the empirical probability of observing aner-
ror value smaller or equal tox. First, we compute the errors
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Table 3: Average Rankings of the local version of theχPSO variants, achieved
by the Friedman, Aligned Friedman, and Quade statistical tests

Average Ranking
Algorithms Friedman Aligned Friedman Quade
χPSO 5.150 (7) 243.470 (7) 4.809 (7)
χPSO:DE/best/1 4.810 (6) 234.129 (6) 4.326 (6)
χPSO:DE/rand/1 3.220 (2) 132.739 (1) 3.632 (2)
χPSO:DE/cur-to-best/1 4.190 (5) 187.489 (5) 4.141 (5)
χPSO:DE/best/2 3.940 (4) 159.280 (4) 3.957 (4)
χPSO:DE/rand/2 3.570 (3) 135.710 (3) 3.637 (3)
χPSO:TDE/rand/1 3.120 (1) 135.680 (2) 3.495 (1)
Statistic 38.4214 41.2879 1.7939
p-value 9.291e-7 2.541e-7 0.100

for all considered algorithms on all the functions and then we
compute theECDF for each algorithm. This enables a summa-
rizing comparison of the algorithms in all the benchmarks, as
largerECDF values for the same argument correspond to better
performance.

The statistical analysis starts with Table 3, which depictsthe
average rankings computed through the Friedman, the Aligned
Friedman, and the Quade tests. At the bottom of the table we
demonstrate the statistics of each test along with its correspond-
ing p-values. Thep-values computed through the statistics of
the first two statistical tests (9.291e−7, 2.541e−7)and the Iman
and Davenport extension (F f = 7.1972, p-value: 3.531e− 7),
strongly suggests the existence of significant differencesamong
the considered algorithms, at the level of significanceα = 0.05.
The p-value of the Quade test rejects the null hypothesis at the
significance level ofα = 0.05,while accepts it atα = 0.1. Thus,
the Quade test suggests that the corresponding algorithms does
not exhibit significant differences in the most difficult bench-
mark functions at the level of significanceα = 0.05,while there
are significant differences if we increase the level atα = 0.1.
Additionally, Table 3 highlights the ranking of the considered
algorithms. It is obvious to observe that the originalχPSO algo-
rithm always comes in the last position of the rankings, while
the first two positions belong to theχPSO:DE/rand/1 and the
χPSO:TDE/rand/1 hybrids. As expected by the aforementioned
extensive results, the first three positions always belong to the
hybrid PSO variants with explorative mutation strategies,while
the next three positions always belong to the hybrids with ex-
ploitative mutation strategies.

To detect the cases in which the best performing algorithm
(control method) exhibits a significant variation, we continue
with the post-hoc analysis. Table 4 demonstrates the results
of the post-hoc tests for the Friedman, Aligned Friedman, and
Quade tests. For each test, we exhibit thep-values of the post-
hoc tests at the level of significanceα = 0.05. Notice that
the control method of the Friedman and the Quade test is the
χPSO:TDE/rand/1 hybrid, while for the Aligned Friedman test
is theχPSO:DE/rand/1 hybrid. We can safely conclude that for
each test, the corresponding control method is always signifi-
cantly different to the originalχPSO algorithm. Additionally,
from the first two tests, we can highlight that there is a signifi-
cant difference between the corresponding control method and

Table 4: Post-hoc tests analysis for the Friedman, Aligned Friedman, and
Quade tests. For each test, we provide thep-values of the Holm, Rom, and
Finner post-hoc tests at the level of significanceα = 0.05.

Post-hocp-values for the Friedman test, with control method:χPSO:TDE/rand/1
algorithm z-value p-value Holm Rom Finner
χPSO 4.6985 2.6203e-6 0.0083 (+) 0.0087 (+) 0.0085 (+)

χPSO:DE/best/1 3.9115 9.1690e-5 0.0100 (+) 0.0105 (+) 0.0169 (+)
χPSO:DE/cur-to-best/1 2.4765 0.0132 0.0125 (+) 0.0131 (=) 0.0253 (+)

χPSO:DE/best/2 1.8979 0.0577 0.0166 (=) 0.0166 (=) 0.0336 (+)
χPSO:DE/rand/2 1.0415 0.2976 0.0250 (=) 0.0250 (=) 0.0418 (=)
χPSO:DE/rand/1 0.2314 0.8169 0.0500 (=) 0.0500 (=) 0.0500 (=)

Post-hocp-values for the Aligned Friedman test, with control method:χPSO:DE/rand/1
algorithm z-value p-value Holm Rom Finner
χPSO 5.4719 4.4522e-8 0.0083 (+) 0.0087 (+) 0.0085 (+)

χPSO:DE/best/1 5.0103 5.4330e-7 0.0100 (+) 0.0105 (+) 0.0169 (+)
χPSO:DE/cur-to-best/1 2.7055 0.0068 0.0125 (+) 0.0131 (+) 0.0253 (+)

χPSO:DE/best/2 1.3115 0.1896 0.0166 (+) 0.0166 (=) 0.0336 (+)
χPSO:DE/rand/2 0.1467 0.8833 0.0250 (=) 0.0250 (=) 0.0418 (=)
χPSO:TDE/rand/1 0.1452 0.8844 0.0500 (=) 0.0500 (=) 0.0500 (=)

Post-hocp-values for the Quade test, with control method:χPSO:TDE/rand/1
algorithm z-value p-value Holm Rom Finner
χPSO 1.5287 0.1263 0.0083 (+) 0.0087 (+) 0.0085 (+)

χPSO:DE/best/1 0.9668 0.3336 0.0100 (=) 0.0105 (=) 0.0169 (=)
χPSO:DE/cur-to-best/1 0.7511 0.4525 0.0125 (=) 0.0131 (=) 0.0253 (=)

χPSO:DE/best/2 0.5372 0.5910 0.0166 (=) 0.0166 (=) 0.0336 (=)
χPSO:DE/rand/2 0.1655 0.8685 0.0250 (=) 0.0250 (=) 0.0418 (=)
χPSO:DE/rand/1 0.1591 0.8735 0.0500 (=) 0.0500 (=) 0.0500 (=)

bothχPSO:DE/best/1 andχPSO:DE/cur-to-best/1 hybrids.
Finally, to provide a summarizing comparison of the pro-

posed framework on all benchmark functions, we utilize
the Empirical Cumulative probability Distribution Function
(ECDF) of the solution error values on all 30 and 50–
dimensional versions of the CEC 2005 benchmark functions.
Figure 6, illustrates theECDF of the error for the original lo-
cal version ofχPSO versus its hybrid DE variants. As it can
be clearly observed, the hybrid DE variants of theχPSO al-
gorithm exhibit a great potential on the CEC 2005 function
set. Almost all hybrid DE variants exhibit higher ECDF val-
ues compared with the originalχPSO algorithm, except for the
χPSO:DE:best/1, which demonstrates lower ECDF values in
many solution error values. In general, theχPSO:DE:rand/1
and χPSO:TDE:rand/1 produce one to two orders of magni-
tude less error values than the originalχPSO algorithm, i.e.
theχPSO:DE:rand/1 andχPSO:TDE:rand/1 curves reach unity
at approximate error106, while the originalχPSO curve at ap-
proximate error108 (please refer to the zoomed subfigure in-
side Figure 6). A similar behavior can be observed for the
χPSO:DE:rand/2 variant, where it reaches unity at approximate
error107.

5.2. Hybridization of State-of-the-art PSO Variants

In this subsection, we apply the hybrid DE-based framework
on five well known and widely used PSO variants. Based on the
aforementioned analysis on theχPSO algorithm, we apply to
the PSO variants the three best performing DE mutation strate-
gies i.e. the explorative DE/rand/1, DE/rand/2, and TDE/rand/1.
Specifically, we incorporate the proposed framework on: i) the
Bare Bones Particle Swarm Optimization (BBPSO) [46], ii)
the Dynamic Multi Swarm Particle Swarm Optimization (DM-
SPSO) [53], iii) the Fully Informed Particle Swarm Optimiza-
tion (FIPS) [57], iv) the Unified Particle Swarm Optimization
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Table 5: Error values of the BBPSO algorithm and their corresponding explorative hybrid DE variants on the 30 and 50–dimensional CEC 2005 benchmark functions
BBPSO BBPSO:DE/rand/1 BBPSO:DE/rand/2 BBPSO:TDE/rand/1

fi D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
f1 30 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 =

50 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 =
f2 30 6.000e-03 9.260e-03 8.480e-03 0.000e+000.000e+00 0.000e+00 + 0.000e+00 7.200e-04 2.295e-03 + 0.000e+000.000e+00 0.000e+00 +

50 2.407e+02 2.886e+02 1.452e+02 6.600e-02 9.474e-02 9.389e-02 + 6.257e+03 6.169e+03 2.161e+03 – 4.234e+015.274e+01 4.550e+01 +
f3 30 1.243e+06 1.295e+06 5.728e+05 2.884e+053.398e+05 1.905e+05 + 6.326e+056.659e+05 3.727e+05 + 4.366e+054.476e+05 1.635e+05 +

50 3.693e+06 3.709e+06 9.352e+05 8.047e+058.501e+05 2.933e+05 + 2.445e+07 2.565e+07 1.008e+07 + 1.202e+061.365e+06 5.064e+05 +
f4 30 1.962e+03 2.307e+03 1.188e+03 4.600e-02 4.047e-01 1.048e+00 + 1.436e+002.362e+00 4.151e+00 + 5.250e-02 3.123e-01 1.149e+00 +

50 3.026e+04 2.965e+04 6.094e+03 6.533e+027.857e+02 5.018e+02 + 1.811e+041.861e+04 5.227e+03 + 2.708e+032.837e+03 1.400e+03 +
f5 30 5.243e+03 5.314e+03 1.033e+03 2.470e+032.490e+03 4.814e+02 + 4.436e+024.746e+02 3.038e+02 + 2.569e+032.614e+03 4.749e+02 +

50 1.295e+04 1.262e+04 1.969e+03 3.425e+033.363e+03 5.542e+02 + 4.249e+034.278e+03 6.310e+02 + 3.830e+033.796e+03 4.907e+02 +
f6 30 1.148e+01 2.796e+01 4.218e+01 1.665e+012.363e+01 2.879e+01 = 9.000e-03 5.609e-01 1.738e+00 + 1.758e+012.241e+01 2.147e+01 +

50 4.016e+01 5.831e+01 4.576e+01 3.806e+015.808e+01 3.589e+01 = 3.782e+015.276e+01 2.660e+01 = 3.897e+015.049e+01 2.297e+01 =
f7 30 4.696e+03 4.696e+03 5.039e-01 4.696e+034.696e+03 1.837e-12 = 4.696e+034.696e+03 1.837e-12 = 4.696e+034.696e+03 1.837e-12 =

50 6.195e+03 6.197e+03 4.553e+00 6.195e+036.195e+03 4.594e-12 + 6.196e+03 6.196e+03 4.949e-01 – 6.195e+036.195e+03 4.594e-12 +
f8 30 2.095e+01 2.094e+01 5.696e-02 2.094e+012.094e+01 5.119e-02 = 2.095e+01 2.095e+01 4.447e-02 = 2.096e+01 2.095e+01 5.207e-02 =

50 2.115e+01 2.114e+01 2.978e-02 2.114e+012.114e+01 4.412e-02 = 2.114e+012.113e+01 3.845e-02 = 2.114e+012.113e+01 4.265e-02 =
f9 30 5.622e+01 5.635e+01 1.079e+01 3.980e+014.107e+01 1.164e+01 + 4.278e+014.473e+01 1.369e+01 + 4.179e+014.171e+01 1.250e+01 +

50 1.338e+02 1.329e+02 2.131e+01 8.805e+018.911e+01 1.861e+01 + 9.999e+019.657e+01 2.265e+01 + 8.656e+018.754e+01 2.055e+01 +
f10 30 7.213e+01 7.556e+01 1.919e+01 4.908e+016.447e+01 4.302e+01 + 1.553e+02 1.419e+02 4.825e+01 – 1.033e+02 1.113e+02 6.642e+01 =

50 1.691e+021.755e+02 4.101e+01 3.418e+02 2.837e+02 1.187e+02 – 3.100e+02 2.837e+02 1.024e+02 – 3.528e+02 3.404e+02 5.788e+01 –
f11 30 2.790e+01 2.802e+01 1.926e+00 2.872e+012.737e+01 7.856e+00 = 3.503e+01 3.471e+01 3.749e+00 – 2.575e+012.604e+01 8.401e+00 =

50 5.483e+015.471e+01 3.821e+00 6.843e+01 6.552e+01 9.517e+00 – 6.948e+01 6.915e+01 4.423e+00 – 6.922e+01 6.769e+01 5.956e+00 –
f12 30 1.590e+03 2.585e+03 2.746e+03 1.762e+032.423e+03 2.512e+03 = 1.247e+032.217e+03 2.435e+03 = 1.970e+03 2.826e+03 3.003e+03 =

50 1.447e+04 1.505e+04 9.270e+03 8.694e+031.056e+04 8.017e+03 + 1.665e+04 1.667e+04 1.244e+04 = 4.577e+037.914e+03 7.815e+03 +
f13 30 6.252e+00 6.503e+00 1.855e+00 3.049e+003.164e+00 7.816e-01 + 3.260e+003.286e+00 8.615e-01 + 3.294e+003.376e+00 8.327e-01 +

50 1.763e+01 1.839e+01 4.973e+00 5.909e+005.914e+00 1.052e+00 + 6.739e+007.813e+00 4.580e+00 + 5.988e+006.000e+00 1.184e+00 +
f14 30 1.237e+011.229e+01 3.984e-01 1.300e+01 1.279e+01 5.299e-01 – 1.307e+01 1.299e+01 4.143e-01 – 1.295e+01 1.292e+01 3.989e-01 –

50 2.223e+012.209e+01 4.659e-01 2.297e+01 2.288e+01 2.941e-01 – 2.301e+01 2.288e+01 3.969e-01 – 2.295e+01 2.291e+01 2.038e-01 –
f15 30 3.033e+023.249e+02 8.537e+01 4.000e+02 3.663e+02 7.742e+01 – 4.000e+02 3.758e+02 8.810e+01 – 3.000e+02 3.477e+02 7.293e+01 =

50 2.511e+022.834e+02 8.431e+01 4.000e+02 3.541e+02 8.385e+01 – 4.000e+02 3.563e+02 8.323e+01 – 4.000e+02 3.360e+02 9.207e+01 –
f16 30 1.187e+02 1.356e+02 5.300e+01 7.661e+011.064e+02 8.450e+01 + 1.792e+02 1.719e+02 7.859e+01 – 1.004e+02 1.459e+02 1.164e+02 =

50 1.318e+021.408e+02 3.960e+01 2.399e+02 2.025e+02 8.719e+01 – 2.095e+02 1.981e+02 6.608e+01 – 2.475e+02 2.417e+02 3.913e+01 –
f17 30 1.580e+02 1.737e+02 6.599e+01 8.545e+011.348e+02 1.009e+02 + 1.851e+02 2.043e+02 8.026e+01 + 1.872e+02 1.837e+02 1.024e+02 =

50 2.038e+022.099e+02 4.542e+01 2.602e+02 2.527e+02 5.254e+01 – 2.653e+02 2.620e+02 3.378e+01 – 2.620e+02 2.666e+02 4.111e+01 –
f18 30 9.270e+02 9.101e+02 4.536e+01 9.101e+029.036e+02 2.658e+01 + 9.071e+028.988e+02 2.948e+01 + 9.119e+028.892e+02 4.808e+01 +

50 9.928e+02 9.935e+02 2.367e+01 9.279e+029.255e+02 1.890e+01 + 9.234e+029.069e+02 9.336e+01 + 9.280e+029.182e+02 3.614e+01 +
f19 30 9.247e+02 9.209e+02 3.222e+01 9.103e+028.950e+02 3.879e+01 + 9.067e+029.029e+02 2.133e+01 + 9.120e+029.016e+02 3.442e+01 +

50 9.866e+02 9.913e+02 1.812e+01 9.259e+029.111e+02 9.017e+01 + 9.229e+029.031e+02 9.205e+01 + 9.276e+029.235e+02 2.762e+01 +
f20 30 9.247e+02 9.167e+02 3.558e+01 9.097e+028.930e+02 4.106e+01 + 9.076e+029.054e+02 1.534e+01 + 9.121e+028.927e+02 4.399e+01 +

50 9.868e+02 9.890e+02 2.113e+01 9.270e+029.193e+02 3.153e+01 + 9.226e+029.180e+02 2.445e+01 + 9.267e+029.131e+02 3.987e+01 +
f21 30 5.000e+02 5.060e+02 4.243e+01 5.000e+02 5.248e+02 1.067e+02 = 5.000e+02 5.240e+02 8.221e+01 = 5.000e+02 5.512e+02 1.647e+02 =

50 5.000e+02 5.199e+02 1.063e+02 5.000e+02 5.060e+02 4.243e+01 = 5.000e+02 5.000e+02 0.000e+00 = 5.000e+02 5.242e+02 8.277e+01 =
f22 30 9.649e+02 9.675e+02 2.823e+01 9.155e+029.161e+02 1.481e+01 + 9.201e+029.157e+02 1.564e+01 + 9.168e+029.163e+02 1.373e+01 +

50 1.006e+03 1.006e+03 1.564e+01 9.648e+029.623e+02 1.051e+01 + 9.812e+029.810e+02 1.259e+01 + 9.626e+029.612e+02 9.699e+00 +
f23 30 5.000e+02 5.653e+02 1.887e+02 5.000e+025.180e+02 7.197e+01 = 5.000e+025.180e+02 7.197e+01 = 5.000e+025.321e+02 1.348e+02 =

50 5.000e+02 5.000e+02 0.000e+00 5.000e+02 5.060e+02 4.243e+01 = 5.000e+02 5.060e+02 4.243e+01 = 5.000e+02 5.120e+02 5.938e+01 =
f24 30 2.000e+02 2.000e+02 0.000e+00 2.000e+02 2.000e+02 0.000e+00 = 2.000e+02 2.000e+02 0.000e+00 = 2.000e+02 2.000e+02 0.000e+00 =

50 2.000e+02 2.211e+02 1.374e+02 2.000e+02 2.000e+02 0.000e+00 = 2.000e+02 2.000e+02 0.000e+00 = 2.000e+02 2.000e+02 0.000e+00 =
f25 30 1.669e+03 1.668e+03 7.609e+00 1.636e+031.637e+03 7.052e+00 + 1.658e+031.657e+03 9.273e+00 + 1.632e+031.634e+03 6.186e+00 +

50 1.724e+03 1.724e+03 6.689e+00 1.686e+031.687e+03 5.760e+00 + 1.713e+031.714e+03 4.454e+00 + 1.683e+031.683e+03 3.877e+00 +
Total number of (+/–/=): (27/8/15) Total number of (+/–/=): (23/13/14) Total number of (+/–/=): (25/7/18)

(UPSO) [75, 76], and v) the Comprehensive Learning Particle
Swarm Optimizer (CLPSO) [52].

We evaluate the performance of the five PSO variants and
their corresponding DE-based modifications on the 30 and the
50–dimensional versions of the CEC 2005 function set. Ta-
bles 5–9 report their comprehensive experimental results.It can
be easily observed that the hybrid approaches exhibit similari-
ties on their performance, so based on their performance simi-
larities, we can distinguish them on three groups; BBPSO and
DMSPSO, FIPS and UPSO, and CLPSO.

For the first group, we can easily observe that all hybrid vari-
ants result either significant performance gains or operatesim-
ilarly, on all unimodal and the majority of hybrid composition
functions. In the multimodal function cases, each algorithm
exhibits different performance, but in most of the cases thehy-
brids outperform the corresponding PSO algorithms.

More specifically, in the BBPSO case, the proposed hy-

brids substantially influence its performance. Table 5, high-
lights that all hybrid variants exhibit significant improvements
on all unimodal (f1 − f5), the majority of hybrid composition
( f18 − f25), and on five multimodal functions (f6 − f9, and
f12). On the contrary, the performance of the BBPSO algo-
rithm is deteriorated by the hybrid DE mutation strategies only
on 6 functions, i.e. in two multimodal (f10 and f11), one ex-
pandedf14, and three hybrid composition functions (f15 − f17).
Concluding, we observe that between the three hybrids the
best performing variant, in terms of lower error values, is the
BBPSO:DE/rand/1; second comes BBPSO:TDE/rand/1, while
next comes the BBPSO:DE/rand/2 hybrid. This observation is
validated through the aforementioned statistical rankingtests
and the corresponding post-hoc analysis, which strongly sug-
gest that there exist statistical significant performance differ-
ences among the considered hybrids and the BBPSO algorithm.
Trying to rationalize the highlighted improvements, we recall
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Table 6: Error values of the DMSPSO algorithm and their corresponding explorative hybrid DE variants on the 30 and 50–dimensional CEC 2005 benchmark
functions

DMSPSO DMSPSO:DE/rand/1 DMSPSO:DE/rand/2 DMSPSO:TDE/rand/1
fi D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
f1 30 1.143e+02 3.135e+02 4.149e+02 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 +

50 2.349e+02 3.870e+02 3.855e+02 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 +
f2 30 1.536e+02 7.801e+02 2.109e+03 0.000e+000.000e+00 0.000e+00 + 0.000e+00 4.000e-05 1.979e-04 + 0.000e+000.000e+00 0.000e+00 +

50 3.311e+02 9.666e+02 1.409e+03 7.500e-02 1.199e-01 1.503e-01 + 2.365e+03 2.583e+03 1.134e+03 – 1.426e+011.863e+01 1.291e+01 +
f3 30 3.898e+06 5.623e+06 6.225e+06 4.907e+055.242e+05 2.489e+05 + 7.316e+058.041e+05 4.326e+05 + 6.509e+057.501e+05 3.905e+05 +

50 8.835e+06 1.317e+07 1.579e+07 1.373e+061.434e+06 4.832e+05 + 2.395e+07 2.499e+07 9.690e+06 – 2.382e+062.423e+06 9.628e+05 +
f4 30 2.945e+02 8.561e+02 1.292e+03 5.500e-03 5.178e-02 1.071e-01 + 1.770e-016.673e+00 4.310e+01 + 9.000e-035.451e+00 3.003e+01 +

50 1.306e+04 1.343e+04 3.945e+03 3.866e+025.254e+02 4.393e+02 + 1.014e+041.077e+04 3.905e+03 + 1.586e+031.653e+03 9.844e+02 +
f5 30 4.368e+03 4.261e+03 1.873e+03 2.283e+032.296e+03 8.238e+02 + 4.280e-011.787e+02 6.176e+02 + 2.550e+032.590e+03 8.867e+02 +

50 5.311e+03 5.533e+03 1.449e+03 3.073e+033.170e+03 7.913e+02 + 3.207e+033.150e+03 1.448e+03 + 3.454e+033.560e+03 6.465e+02 +
f6 30 2.226e+06 2.721e+07 7.289e+07 1.678e+015.107e+01 8.251e+01 + 8.445e-011.503e+00 1.816e+00 + 1.910e+014.303e+01 5.599e+01 +

50 2.226e+06 1.768e+07 4.103e+07 5.984e+011.031e+02 8.942e+01 + 3.591e+015.565e+01 3.536e+01 + 4.329e+017.337e+01 4.989e+01 +
f7 30 4.297e+03 4.335e+03 2.190e+02 4.186e+034.208e+03 1.397e+02 + 4.224e+034.204e+03 1.629e+02 + 4.214e+034.220e+03 2.013e+02 +

50 6.029e+03 6.050e+03 1.312e+02 6.001e+035.989e+03 5.232e+01 + 5.973e+035.963e+03 8.479e+01 + 5.974e+035.979e+03 5.398e+01 +
f8 30 2.093e+012.093e+01 6.189e-02 2.097e+01 2.097e+01 4.510e-02 – 2.098e+01 2.098e+01 5.030e-02 – 2.098e+01 2.098e+01 4.104e-02 –

50 2.113e+012.113e+01 3.770e-02 2.115e+01 2.114e+01 3.609e-02 = 2.116e+01 2.115e+01 3.617e-02 – 2.116e+01 2.115e+01 3.091e-02 –
f9 30 4.524e+01 4.848e+01 1.499e+01 3.096e+013.194e+01 1.017e+01 + 4.324e+014.726e+01 1.254e+01 = 2.639e+012.798e+01 9.064e+00 +

50 1.006e+02 9.893e+01 2.169e+01 5.926e+016.024e+01 1.518e+01 + 9.372e+019.706e+01 2.443e+01 = 5.330e+015.209e+01 1.215e+01 +
f10 30 7.797e+01 7.999e+01 2.003e+01 5.940e+015.972e+01 2.586e+01 + 9.556e+01 9.700e+01 1.619e+01 – 8.544e+01 8.464e+01 1.613e+01 =

50 1.673e+021.662e+02 2.167e+01 1.977e+02 1.966e+02 1.990e+01 – 2.255e+02 2.209e+02 2.477e+01 – 1.899e+02 1.874e+02 1.633e+01 –
f11 30 2.929e+01 2.903e+01 2.259e+00 2.981e+012.787e+01 5.862e+00 = 3.315e+01 3.297e+01 1.829e+00 – 3.150e+01 3.089e+01 2.397e+00 –

50 5.795e+015.774e+01 2.256e+00 6.084e+01 6.083e+01 1.433e+00 – 6.385e+01 6.346e+01 2.902e+00 – 6.102e+01 6.085e+01 2.349e+00 –
f12 30 5.375e+04 7.843e+04 6.836e+04 2.957e+044.452e+04 4.304e+04 + 2.522e+045.098e+04 7.114e+04 + 1.866e+043.142e+04 3.786e+04 +

50 1.212e+05 1.659e+05 1.461e+05 6.368e+047.716e+04 7.845e+04 + 6.368e+048.903e+04 7.232e+04 + 5.644e+047.678e+04 7.333e+04 +
f13 30 9.962e+00 1.127e+01 5.622e+00 2.981e+003.039e+00 8.358e-01 + 6.792e+006.786e+00 1.972e+00 + 3.251e+003.827e+00 1.716e+00 +

50 7.812e+00 8.219e+00 2.218e+00 5.843e+006.220e+00 1.726e+00 + 1.487e+01 1.490e+01 4.858e+00 – 1.128e+01 1.163e+01 5.020e+00 –
f14 30 1.212e+011.207e+01 6.594e-01 1.294e+01 1.289e+01 2.232e-01 – 1.314e+01 1.306e+01 2.150e-01 – 1.294e+01 1.285e+01 3.322e-01 –

50 2.246e+012.241e+01 2.289e-01 2.278e+01 2.276e+01 1.869e-01 – 2.272e+01 2.274e+01 2.212e-01 – 2.277e+01 2.272e+01 2.164e-01 –
f15 30 5.105e+02 5.222e+02 8.016e+01 3.277e+023.364e+02 9.731e+01 + 2.767e+022.926e+02 8.687e+01 + 3.047e+023.248e+02 7.782e+01 +

50 3.694e+02 3.778e+02 6.679e+01 2.265e+022.479e+02 6.049e+01 + 2.784e+022.913e+02 5.926e+01 + 2.143e+022.401e+02 6.021e+01 +
f16 30 2.250e+02 2.916e+02 1.683e+02 1.109e+021.553e+02 1.157e+02 + 1.332e+021.753e+02 9.790e+01 + 1.114e+021.650e+02 1.174e+02 +

50 1.419e+02 1.670e+02 8.193e+01 1.495e+021.614e+02 3.348e+01 + 1.730e+02 1.869e+02 4.981e+01 – 1.502e+02 1.789e+02 7.482e+01 –
f17 30 2.300e+02 2.988e+02 1.675e+02 1.653e+022.035e+02 1.136e+02 + 1.865e+022.311e+02 9.230e+01 = 1.817e+022.310e+02 1.113e+02 =

50 2.163e+022.413e+02 7.257e+01 2.281e+02 2.471e+02 5.777e+01 – 2.472e+02 2.579e+02 4.811e+01 – 2.154e+022.411e+02 6.038e+01 =
f18 30 9.249e+02 9.372e+02 3.011e+01 9.059e+029.070e+02 2.901e+00 + 9.069e+029.072e+02 2.548e+00 + 9.068e+029.076e+02 4.379e+00 +

50 9.300e+02 9.334e+02 1.156e+01 9.170e+029.200e+02 7.908e+00 + 9.146e+029.167e+02 6.179e+00 + 9.185e+029.200e+02 5.550e+00 +
f19 30 9.191e+02 9.328e+02 2.703e+01 9.068e+029.069e+02 2.713e+00 + 9.060e+029.064e+02 1.991e+00 + 9.074e+029.083e+02 5.963e+00 +

50 9.297e+02 9.315e+02 9.374e+00 9.158e+029.169e+02 4.131e+00 + 9.153e+029.166e+02 4.368e+00 + 9.202e+029.205e+02 4.918e+00 +
f20 30 9.281e+02 9.394e+02 2.991e+01 9.068e+029.087e+02 8.649e+00 + 9.053e+029.073e+02 5.078e+00 + 9.069e+029.070e+02 2.187e+00 +

50 9.299e+02 9.303e+02 8.262e+00 9.170e+029.184e+02 5.230e+00 + 9.149e+029.165e+02 5.067e+00 + 9.194e+029.194e+02 5.415e+00 +
f21 30 1.098e+03 1.037e+03 1.558e+02 1.091e+039.962e+02 2.188e+02 + 1.091e+03 1.090e+03 5.062e+00 – 1.088e+039.138e+02 2.702e+02 +

50 1.011e+03 1.011e+03 2.700e+00 1.008e+031.009e+03 3.169e+00 + 1.008e+031.009e+03 3.548e+00 + 1.009e+031.009e+03 3.347e+00 +
f22 30 9.261e+02 9.344e+02 5.295e+01 8.737e+028.730e+02 2.520e+01 + 8.569e+028.644e+02 2.003e+01 + 8.695e+028.702e+02 2.505e+01 +

50 8.997e+02 9.059e+02 1.972e+01 8.960e+028.983e+02 8.919e+00 = 8.997e+029.011e+02 8.508e+00 = 8.960e+028.980e+02 9.710e+00 +
f23 30 1.097e+03 1.063e+03 1.192e+02 1.089e+031.013e+03 1.957e+02 + 1.091e+03 1.089e+03 6.121e+00 – 1.082e+038.302e+02 2.894e+02 +

50 1.011e+03 1.011e+03 2.830e+00 1.008e+031.009e+03 4.458e+00 + 1.010e+031.010e+03 3.895e+00 = 1.009e+031.009e+03 2.799e+00 +
f24 30 9.769e+02 9.851e+02 5.687e+01 9.624e+029.588e+02 2.023e+01 + 9.667e+029.605e+02 1.655e+01 + 9.609e+029.571e+02 2.019e+01 +

50 1.025e+03 1.025e+03 2.067e+00 1.026e+031.009e+03 1.168e+02 + 1.023e+031.022e+03 6.450e+00 + 1.026e+039.928e+02 1.635e+02 =
f25 30 1.639e+03 1.640e+03 8.368e+00 1.634e+031.634e+03 5.722e+00 + 1.636e+031.635e+03 4.445e+00 + 1.635e+031.634e+03 6.052e+00 +

50 1.675e+03 1.676e+03 4.880e+00 1.674e+031.673e+03 5.170e+00 = 1.676e+03 1.677e+03 3.927e+00 – 1.674e+031.673e+03 4.884e+00 =
Total number of (+/–/=): (40/6/4) Total number of (+/–/=): (29/16/5) Total number of (+/–/=): (36/9/5)

that BBPSO updates its particles positions though a Gaussian
distribution, which is based on the particle’s best personal (cog-
nitive) and the best neighborhood (social) positions. Thus, as
the experimental results suggest, an intelligent evolution of the
aforementioned positions can lead them to more promising re-
gions of the optimization space and enhance the power of the
utilized distribution, resulting in a scheme with substantial per-
formance gains.

A similar behavior is observed in the case of the DMSPSO
algorithm, as demonstrated in Table 6. Let us remind you that
DMSPSO implements multiple small swarms that randomly re-
group, in an attempt to introduce a dynamically changing neigh-
borhood structure to each particle. It can be clearly observed in
the reported results that the hybridization framework doesnot
affect the design of DMSPSO; on the contrary, the hybrid algo-
rithms exhibit significant performance gains. There are only 7

out of 50 cases where the proposed framework exhibits deteri-
orated performance against DMSPSO; the multimodalf8 func-
tion, the expandedf14 function, and thef10, f11 and f17 50–
dimensional cases. Here, the best performing algorithm is the
DMSPSO:DE/rand/1, since it produces significantly superior
performance in 40 out of 50 benchmark functions. The DM-
SPSO:TDE/rand/1 variant follows, which demonstrates sig-
nificant performance enhancements on 36 benchmark func-
tions. Although DMSPSO:DE/rand/2 produces significant im-
provements in most of the unimodal (f1, f4, and f5) and the
hybrid composition functions (f17 − f20 and f24), it hinders
the performance of DMSPSO in four multimodal functions
( f8, f10, f11, and f14). The aforementioned observations have
been validated by statistical ranking tests, which indicate that
there are statistical significant performance differencesbetween
the original DMSPSO and all the hybrid algorithm. It has
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Table 7: Error values of the FIPS algorithm and their corresponding explorative hybrid DE variants on the 30 and 50–dimensional CEC 2005 benchmark functions
FIPS FIPS:DE/rand/1 FIPS:DE/rand/2 FIPS:TDE/rand/1

fi D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
f1 30 3.185e+02 5.252e+02 5.571e+02 0.000e+00 3.832e-02 2.647e-01 + 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 +

50 1.149e+03 1.673e+03 1.524e+03 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 +
f2 30 1.460e+04 1.470e+04 2.316e+03 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 + 0.000e+000.000e+00 0.000e+00 +

50 2.633e+04 2.574e+04 4.424e+03 0.000e+00 1.580e-03 5.218e-03 + 0.000e+00 1.140e-03 7.492e-03 + 0.000e+00 6.860e-03 4.111e-02 +
f3 30 1.530e+07 1.945e+07 1.109e+07 3.881e+054.428e+05 2.337e+05 + 5.373e+056.079e+05 2.831e+05 + 3.810e+054.056e+05 1.826e+05 +

50 5.586e+07 5.867e+07 2.346e+07 6.488e+059.426e+05 1.479e+06 + 4.667e+065.565e+06 4.507e+06 + 9.555e+051.079e+06 5.859e+05 +
f4 30 2.077e+04 2.068e+04 3.107e+03 4.952e+034.871e+03 2.180e+03 + 3.581e+012.442e+02 6.464e+02 + 7.306e+037.655e+03 2.637e+03 +

50 3.355e+04 3.424e+04 3.850e+03 1.220e+041.165e+04 4.941e+03 + 1.306e+031.641e+03 1.231e+03 + 2.004e+041.931e+04 4.259e+03 +
f5 30 1.164e+04 1.174e+04 1.393e+03 3.398e+033.429e+03 7.359e+02 + 5.186e+035.143e+03 8.013e+02 + 3.619e+033.538e+03 5.916e+02 +

50 1.594e+04 1.589e+04 1.147e+03 4.519e+034.543e+03 9.469e+02 + 7.063e+036.949e+03 9.818e+02 + 4.657e+034.727e+03 6.627e+02 +
f6 30 9.832e+06 2.457e+07 3.493e+07 7.246e+012.963e+02 6.637e+02 + 1.361e+011.268e+01 1.095e+01 + 1.939e+013.597e+01 4.064e+01 +

50 6.483e+07 8.021e+07 6.118e+07 1.067e+021.364e+02 1.299e+02 + 4.074e+015.653e+01 2.737e+01 + 6.222e+018.810e+01 6.819e+01 +
f7 30 7.507e+03 7.477e+03 2.158e+02 6.989e+036.928e+03 2.364e+02 + 6.729e+036.704e+03 1.477e+02 + 6.865e+036.842e+03 2.133e+02 +

50 1.037e+04 1.036e+04 2.122e+02 9.271e+039.266e+03 2.407e+02 + 9.071e+039.055e+03 1.651e+02 + 9.228e+039.253e+03 2.641e+02 +
f8 30 2.095e+012.094e+01 6.409e-02 2.098e+01 2.097e+01 5.124e-02 – 2.100e+01 2.099e+01 5.169e-02 – 2.099e+01 2.098e+01 6.824e-02 –

50 2.115e+012.114e+01 4.304e-02 2.116e+01 2.115e+01 3.071e-02 = 2.115e+01 2.115e+01 4.101e-02 = 2.116e+01 2.115e+01 3.189e-02 =
f9 30 5.401e+01 5.395e+01 1.097e+01 2.935e+012.973e+01 7.191e+00 + 2.637e+012.854e+01 6.386e+00 + 2.686e+012.698e+01 6.635e+00 +

50 1.550e+02 1.530e+02 1.791e+01 6.368e+016.632e+01 9.660e+00 + 7.263e+017.315e+01 1.040e+01 + 5.870e+016.133e+01 1.013e+01 +
f10 30 1.545e+02 1.525e+02 2.533e+01 3.333e+013.277e+01 8.352e+00 + 3.234e+013.544e+01 1.695e+01 + 3.134e+013.086e+01 6.779e+00 +

50 3.868e+02 3.928e+02 3.625e+01 7.164e+017.174e+01 1.459e+01 + 8.159e+018.501e+01 1.440e+01 + 7.014e+017.132e+01 1.417e+01 +
f11 30 2.662e+01 2.688e+01 2.641e+00 1.137e+011.119e+01 2.168e+00 + 1.159e+011.545e+01 9.702e+00 + 1.185e+011.196e+01 2.325e+00 +

50 5.363e+01 5.343e+01 3.789e+00 2.274e+012.440e+01 7.502e+00 + 5.923e+014.992e+01 1.998e+01 + 2.387e+012.437e+01 3.438e+00 +
f12 30 4.679e+04 5.185e+04 3.213e+04 3.239e+034.036e+03 3.810e+03 + 1.299e+032.104e+03 2.493e+03 + 3.066e+033.670e+03 3.464e+03 +

50 2.771e+05 2.929e+05 1.490e+05 1.694e+041.672e+04 1.033e+04 + 1.392e+041.364e+04 1.144e+04 + 1.263e+041.408e+04 1.134e+04 +
f13 30 9.604e+00 9.641e+00 1.730e+00 2.788e+002.903e+00 6.031e-01 + 2.910e+003.192e+00 1.411e+00 + 2.797e+002.949e+00 6.968e-01 +

50 2.583e+01 2.638e+01 3.451e+00 4.883e+004.848e+00 8.670e-01 + 4.659e+005.496e+00 2.803e+00 + 4.594e+004.694e+00 8.625e-01 +
f14 30 1.237e+01 1.234e+01 3.198e-01 1.148e+011.143e+01 4.640e-01 + 1.168e+011.167e+01 4.321e-01 + 1.151e+011.147e+01 3.986e-01 +

50 2.196e+01 2.190e+01 3.078e-01 2.086e+012.087e+01 4.916e-01 + 2.155e+012.147e+01 4.193e-01 + 2.093e+012.078e+01 5.681e-01 +
f15 30 4.536e+02 4.556e+02 8.414e+01 3.149e+023.472e+02 7.027e+01 + 4.000e+023.754e+02 6.530e+01 + 3.119e+023.445e+02 5.427e+01 +

50 5.175e+02 5.174e+02 5.406e+01 4.000e+023.430e+02 8.769e+01 + 4.000e+023.630e+02 7.620e+01 + 4.000e+023.551e+02 7.709e+01 +
f16 30 3.271e+02 3.414e+02 1.081e+02 6.025e+011.458e+02 1.688e+02 + 6.798e+011.380e+02 1.339e+02 + 6.027e+011.740e+02 1.904e+02 +

50 3.227e+02 3.296e+02 6.967e+01 5.036e+017.310e+01 8.493e+01 + 5.663e+016.513e+01 3.390e+01 + 4.877e+017.650e+01 9.686e+01 +
f17 30 4.333e+02 4.502e+02 1.420e+02 7.310e+011.562e+02 1.659e+02 + 6.372e+011.164e+02 1.052e+02 + 6.647e+011.700e+02 1.842e+02 +

50 4.371e+02 4.576e+02 9.022e+01 6.467e+019.462e+01 1.009e+02 + 6.479e+017.626e+01 5.689e+01 + 6.394e+019.427e+01 1.014e+02 +
f18 30 1.055e+03 1.052e+03 2.219e+01 9.662e+029.315e+02 7.552e+01 + 9.706e+029.313e+02 7.494e+01 + 9.630e+029.288e+02 7.394e+01 +

50 1.070e+03 1.069e+03 1.346e+01 9.982e+029.848e+02 3.978e+01 + 1.002e+039.840e+02 6.248e+01 + 9.787e+029.660e+02 4.164e+01 +
f19 30 1.047e+03 1.049e+03 1.873e+01 9.694e+029.385e+02 7.080e+01 + 9.729e+029.517e+02 6.263e+01 + 9.621e+029.393e+02 6.294e+01 +

50 1.070e+03 1.070e+03 1.603e+01 9.849e+029.720e+02 4.461e+01 + 1.004e+039.856e+02 6.329e+01 + 9.827e+029.540e+02 9.002e+01 +
f20 30 1.049e+03 1.050e+03 1.811e+01 9.674e+029.316e+02 7.572e+01 + 9.691e+029.357e+02 7.328e+01 + 9.583e+029.262e+02 7.171e+01 +

50 1.062e+03 1.065e+03 1.335e+01 9.944e+029.836e+02 3.583e+01 + 9.990e+029.781e+02 6.715e+01 + 9.865e+029.744e+02 3.637e+01 +
f21 30 1.172e+03 1.093e+03 1.633e+02 5.000e+025.130e+02 9.193e+01 + 5.000e+025.187e+02 9.839e+01 + 5.000e+025.194e+02 1.007e+02 +

50 1.209e+03 1.196e+03 5.787e+01 5.000e+025.645e+02 1.761e+02 + 5.000e+025.000e+02 0.000e+00 + 5.000e+025.720e+02 1.936e+02 +
f22 30 1.121e+03 1.126e+03 2.782e+01 9.995e+029.999e+02 1.781e+01 + 1.006e+031.004e+03 1.734e+01 + 9.987e+021.000e+03 1.827e+01 +

50 1.200e+03 1.202e+03 2.191e+01 1.081e+031.082e+03 1.643e+01 + 1.074e+031.077e+03 1.170e+01 + 1.077e+031.077e+03 1.523e+01 +
f23 30 1.177e+03 1.072e+03 1.936e+02 5.000e+025.726e+02 1.914e+02 + 5.000e+025.381e+02 1.398e+02 + 5.000e+025.205e+02 9.989e+01 +

50 1.210e+03 1.191e+03 9.395e+01 5.000e+025.809e+02 2.213e+02 + 5.000e+025.545e+02 1.868e+02 + 5.000e+025.862e+02 2.213e+02 +
f24 30 1.268e+03 1.254e+03 5.409e+01 2.000e+022.000e+02 0.000e+00 + 2.000e+022.000e+02 0.000e+00 + 2.000e+022.000e+02 0.000e+00 +

50 1.282e+03 1.283e+03 1.049e+01 2.000e+022.000e+02 0.000e+00 + 2.000e+022.000e+02 0.000e+00 + 2.000e+022.000e+02 0.000e+00 +
f25 30 1.780e+03 1.781e+03 1.046e+01 1.749e+031.747e+03 1.070e+01 + 1.749e+031.747e+03 7.632e+00 + 1.744e+031.744e+03 1.096e+01 +

50 1.866e+03 1.866e+03 7.076e+00 1.815e+031.814e+03 8.022e+00 + 1.807e+031.807e+03 6.792e+00 + 1.812e+031.812e+03 8.940e+00 +
Total number of (+/–/=): (48/1/1) Total number of (+/–/=): (48/1/1) Total number of (+/–/=): (48/1/1)

been also observed that DMSPSO:DE/rand/1 algorithm always
exhibits significant performance differences against the DM-
SPSO:DE/rand/2. Finally, the performance difference between
DMSPSO:DE/rand/1 and DMSPSO:TDE/rand/1 is not statisti-
cal significant.

The second group consists of the Fully Informed PSO
(FIPS) [57] and the Unified PSO (UPSO) [75, 76] algorithms.
Recall that FIPS depends on the particle’s best personal posi-
tions, since it produces new particles by calculating the cen-
troid of its neighboring best personal positions. Additionally,
UPSO algorithm utilizes a velocity update scheme that effi-
ciently combines the local and global versions of theχPSO
algorithm to balance their explorative and exploitative charac-
teristics. For each particle, it incorporates four best personal
positions in its velocity update rule, i.e. the global best,the best
neighborhood, and two times the best personal position of the
corresponding particle. Consequently, their evolution and con-

vergence dynamics strongly depend on the best personal posi-
tions of the swarm. Hence, it is expected that the evolution-
ary process of the proposed framework will have a great im-
pact on their performance. This can be validated by the ex-
perimental results reported in Table 7 and Table 8. It is ev-
ident that the proposed framework significantly enhances the
performance of both algorithms for almost all benchmark func-
tions. Both algorithms exhibit inferior performance only in the
multimodal f8 function. Generally speaking, in PSO variants
where the update rule strongly depends on the swarm’s best
personal positions (such as the FIPS and UPSO algorithms),
an intelligent evolution of the best personal positions is highly
recommended, since it may yield significant improvements in
the quality of the solutions, with a relatively small computa-
tional overhead. Moreover, based on statistical rankings of
their performance, all hybrids demonstrate statistical signifi-
cant performance differences against their correspondingPSO
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Table 8: Error values of the UPSO algorithm and their corresponding explorative hybrid DE variants on the 30 and 50–dimensional CEC 2005 benchmark functions
UPSO UPSO:DE/rand/1 UPSO:DE/rand/2 UPSO:TDE/rand/1

fi D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
f1 30 1.269e+03 1.306e+03 7.328e+02 0.000e+001.115e+01 3.569e+01 + 0.000e+00 5.600e-04 3.818e-03 + 0.000e+00 4.000e-05 2.828e-04 +

50 6.840e+02 7.100e+02 3.290e+02 0.000e+000.000e+00 0.000e+00 + 0.000e+00 4.000e-05 1.979e-04 + 0.000e+000.000e+00 0.000e+00 +
f2 30 6.688e+03 7.602e+03 5.290e+03 0.000e+00 5.032e-02 3.380e-01 + 0.000e+00 1.020e-03 2.190e-03 + 0.000e+000.000e+00 0.000e+00 +

50 3.632e+03 4.220e+03 2.894e+03 0.000e+000.000e+00 0.000e+00 + 3.450e-01 6.988e-01 1.017e+00 + 0.000e+000.000e+00 0.000e+00 +
f3 30 4.308e+07 5.303e+07 3.856e+07 4.715e+055.827e+05 3.593e+05 + 7.485e+051.103e+06 1.135e+06 + 5.068e+055.212e+05 2.279e+05 +

50 4.885e+07 5.340e+07 3.743e+07 1.922e+052.047e+05 1.143e+05 + 1.098e+061.442e+06 1.337e+06 + 4.470e+055.147e+05 2.627e+05 +
f4 30 1.913e+04 1.876e+04 6.086e+03 1.246e+016.605e+01 1.234e+02 + 1.450e+002.466e+00 2.450e+00 + 9.230e-012.132e+00 2.568e+00 +

50 1.353e+04 1.449e+04 4.462e+03 0.000e+00 1.340e-03 5.009e-03 + 1.261e+012.093e+01 3.546e+01 + 3.400e-02 7.682e-02 1.300e-01 +
f5 30 1.268e+04 1.282e+04 2.288e+03 4.335e+034.602e+03 1.181e+03 + 8.583e+038.398e+03 1.048e+03 + 4.486e+034.799e+03 1.273e+03 +

50 1.177e+04 1.207e+04 2.304e+03 6.300e+036.330e+03 1.679e+03 + 7.946e+037.927e+03 1.067e+03 + 5.411e+035.738e+03 1.690e+03 +
f6 30 6.826e+06 1.187e+07 1.355e+07 8.930e+018.370e+04 4.973e+05 + 5.959e+005.795e+00 3.843e+00 + 2.160e+013.938e+01 4.717e+01 +

50 1.160e+06 2.731e+06 3.667e+06 1.848e+012.034e+01 2.199e+01 + 9.178e+001.485e+01 1.959e+01 + 8.322e+008.388e+00 9.917e+00 +
f7 30 7.513e+03 7.524e+03 3.409e+02 7.813e+03 7.802e+03 2.404e+02 – 7.325e+037.286e+03 2.317e+02 + 7.829e+03 7.812e+03 2.308e+02 –

50 7.419e+03 7.420e+03 3.034e+02 7.725e+03 7.713e+03 1.853e+02 – 7.134e+037.091e+03 1.528e+02 + 7.774e+03 7.739e+03 2.122e+02 –
f8 30 2.096e+012.095e+01 5.009e-02 2.098e+01 2.098e+01 4.811e-02 – 2.100e+01 2.098e+01 5.656e-02 – 2.097e+01 2.096e+01 5.457e-02 =

50 2.094e+012.093e+01 5.023e-02 2.097e+01 2.096e+01 4.350e-02 – 2.096e+01 2.095e+01 5.223e-02 – 2.096e+01 2.094e+01 5.685e-02 =
f9 30 7.719e+01 7.839e+01 1.689e+01 4.079e+014.047e+01 1.103e+01 + 5.671e+015.819e+01 1.534e+01 + 3.930e+014.167e+01 1.408e+01 +

50 6.326e+01 6.520e+01 1.764e+01 4.079e+014.209e+01 1.191e+01 + 5.572e+015.717e+01 1.477e+01 + 3.880e+013.761e+01 1.051e+01 +
f10 30 1.526e+02 1.589e+02 5.514e+01 4.129e+014.673e+01 2.823e+01 + 1.295e+021.118e+02 6.239e+01 + 4.676e+019.200e+01 7.336e+01 +

50 1.453e+02 1.442e+02 4.564e+01 3.731e+017.085e+01 6.409e+01 + 1.532e+02 1.284e+02 6.151e+01 = 5.273e+019.895e+01 6.778e+01 +
f11 30 3.164e+01 3.140e+01 4.692e+00 1.455e+011.666e+01 7.222e+00 + 3.579e+01 2.791e+01 1.310e+01 = 1.417e+011.557e+01 5.399e+00 +

50 2.910e+01 2.954e+01 4.439e+00 9.605e+001.125e+01 8.024e+00 + 3.621e+01 3.014e+01 1.232e+01 – 7.917e+001.132e+01 9.895e+00 +
f12 30 7.752e+04 8.984e+04 5.430e+04 2.678e+034.814e+03 5.487e+03 + 1.989e+032.706e+03 3.458e+03 + 1.992e+033.049e+03 3.232e+03 +

50 6.052e+04 7.135e+04 4.785e+04 1.891e+033.180e+03 4.053e+03 + 1.500e+033.142e+03 4.370e+03 + 1.429e+032.281e+03 3.023e+03 +
f13 30 8.489e+00 9.231e+00 4.563e+00 3.091e+003.330e+00 8.610e-01 + 3.258e+003.456e+00 1.053e+00 + 3.194e+003.304e+00 1.034e+00 +

50 6.236e+00 6.478e+00 2.102e+00 2.846e+002.946e+00 7.385e-01 + 3.154e+003.365e+00 1.071e+00 + 3.019e+003.215e+00 8.605e-01 +
f14 30 1.289e+01 1.283e+01 4.178e-01 1.268e+011.253e+01 6.116e-01 + 1.300e+01 1.292e+01 4.140e-01 = 1.271e+011.254e+01 6.114e-01 +

50 1.282e+01 1.274e+01 4.817e-01 1.277e+011.271e+01 4.678e-01 = 1.297e+01 1.289e+01 4.299e-01 = 1.266e+011.254e+01 4.786e-01 +
f15 30 5.373e+02 5.305e+02 9.060e+01 3.255e+023.527e+02 9.148e+01 + 4.000e+023.523e+02 8.342e+01 + 3.110e+023.420e+02 9.342e+01 +

50 5.087e+02 4.843e+02 1.137e+02 4.000e+023.777e+02 9.675e+01 + 4.000e+023.901e+02 8.137e+01 + 3.000e+023.402e+02 8.983e+01 +
f16 30 3.827e+02 3.865e+02 1.416e+02 8.047e+011.546e+02 1.503e+02 + 2.493e+022.713e+02 8.026e+01 + 1.476e+021.918e+02 1.473e+02 +

50 2.909e+02 3.287e+02 1.336e+02 2.138e+022.171e+02 1.296e+02 + 2.368e+022.529e+02 1.042e+02 + 2.337e+022.777e+02 1.099e+02 +
f17 30 3.486e+02 3.875e+02 1.322e+02 1.241e+021.678e+02 1.301e+02 + 2.669e+023.006e+02 8.620e+01 + 2.520e+022.903e+02 1.380e+02 +

50 3.100e+02 3.497e+02 1.259e+02 2.456e+022.710e+02 1.000e+02 + 2.677e+022.920e+02 1.032e+02 + 2.438e+023.080e+02 1.035e+02 =
f18 30 1.051e+03 1.047e+03 3.627e+01 1.003e+039.833e+02 7.023e+01 + 1.009e+031.002e+03 4.283e+01 + 9.924e+029.627e+02 7.874e+01 +

50 1.035e+03 1.033e+03 3.041e+01 1.022e+031.006e+03 5.580e+01 + 9.966e+029.928e+02 2.924e+01 + 1.018e+039.866e+02 8.327e+01 +
f19 30 1.040e+03 1.049e+03 4.636e+01 1.002e+039.740e+02 7.272e+01 + 1.008e+039.988e+02 5.215e+01 + 9.933e+029.567e+02 8.142e+01 +

50 1.027e+03 1.028e+03 3.344e+01 1.016e+039.852e+02 8.262e+01 + 9.948e+029.961e+02 9.678e+00 + 1.015e+039.896e+02 7.872e+01 +
f20 30 1.043e+03 1.044e+03 2.626e+01 9.900e+029.617e+02 7.339e+01 + 1.012e+039.822e+02 7.535e+01 + 9.940e+029.721e+02 6.738e+01 +

50 1.027e+03 1.026e+03 2.788e+01 1.017e+039.980e+02 6.876e+01 + 9.960e+029.969e+02 1.033e+01 + 1.021e+039.903e+02 7.944e+01 =
f21 30 1.162e+03 1.021e+03 2.099e+02 5.000e+025.127e+02 5.931e+01 + 5.000e+025.120e+02 5.938e+01 + 5.001e+025.663e+02 1.709e+02 +

50 7.525e+02 8.542e+02 2.499e+02 5.000e+025.000e+02 5.051e-04 + 5.000e+025.240e+02 8.221e+01 + 5.000e+025.248e+02 1.066e+02 +
f22 30 1.106e+03 1.109e+03 4.488e+01 1.057e+031.054e+03 3.798e+01 + 1.038e+031.040e+03 2.096e+01 + 1.039e+031.035e+03 2.602e+01 +

50 1.085e+03 1.086e+03 4.747e+01 1.055e+031.053e+03 3.036e+01 + 1.028e+031.031e+03 1.829e+01 + 1.046e+031.052e+03 2.912e+01 +
f23 30 1.156e+03 1.030e+03 2.002e+02 5.000e+025.411e+02 1.448e+02 + 5.000e+025.000e+02 2.399e-04 + 5.002e+025.799e+02 1.881e+02 +

50 1.049e+03 9.335e+02 2.551e+02 5.000e+025.060e+02 4.243e+01 + 5.000e+025.060e+02 4.243e+01 + 5.000e+025.060e+02 4.243e+01 +
f24 30 1.141e+03 9.806e+02 3.183e+02 2.000e+022.000e+02 0.000e+00 + 2.000e+022.000e+02 0.000e+00 + 2.000e+022.000e+02 0.000e+00 +

50 5.298e+02 6.952e+02 3.888e+02 2.000e+022.000e+02 0.000e+00 + 2.000e+022.000e+02 0.000e+00 + 2.000e+022.000e+02 0.000e+00 +
f25 30 1.778e+03 1.778e+03 1.256e+01 1.769e+031.767e+03 1.031e+01 + 1.762e+031.761e+03 9.534e+00 + 1.765e+031.763e+03 1.048e+01 +

50 1.769e+03 1.771e+03 1.389e+01 1.770e+03 1.769e+03 9.494e+00 = 1.759e+031.758e+03 6.791e+00 + 1.773e+03 1.771e+03 9.548e+00 =
Total number of (+/–/=): (44/4/2) Total number of (+/–/=): (43/3/4) Total number of (+/–/=): (43/2/5)

algorithm, while the most promising hybrid for both algorithms
is the one that incorporates the TDE/rand/1 mutation strategy,
i.e., FIPS:TDE/rand/1, and UPSO:TDE/rand/1. The hybrid al-
gorithms that employ the DE/rand/1 perform marginally worse
that the corresponding hybrids with the TDE/rand/1 mutation
strategy.

This subsection ends with a discussion on the experimental
results of the proposed framework, applied to the CLPSO algo-
rithm [52]. As demonstrated in Table 9, this is the only vari-
ant in which the proposed approach causes deteriorated perfor-
mance in almost all multimodal and expanded functions. The
hybrid variants exhibit an increased performance on the half
functions of the considered benchmark suite, which are mainly
unimodal and hybrid composition functions.

In more detail, all hybrids operate similarly or produce im-
proved performance in all unimodal functions (f1 − f5). In the
hybrid functions CLPSO:DE/rand/1 and CLPSO:TDE/rand/1

behave similarly, with an increased performance on six func-
tions (f16, f17, and f22 − f25). It is interesting to observe
that although their performance is decreased on the 30–
dimensional cases off18 − f20, the opposite happens on
the 50–dimensional cases. CLPSO:DE/rand/2 demonstrates
an increased performance against CLPSO only in three hy-
brid composition functions (f17 − f20). For the multimodal
functions both CLPSO:DE/rand/1 and CLPSO:TDE/rand/1 re-
sult in significant performance gains only inf10 and f12

functions. Nevertheless, we have performed the afore-
mentioned statistical ranking tests, which suggested that
there exists a significant performance difference among the
considered algorithms, with the best performing algorithm
to be the CLPSO:DE/rand/1 algorithm. Moreover, both
CLPSO:DE/rand/1 and CLPSO:TDE/rand/1 are statistically
better in comparison with the original CLPSO algorithm, while
marginal performance difference can be observed between
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Table 9: Error values of the CLPSO algorithm and their corresponding explorative hybrid DE variants on the 30 and 50–dimensional CEC 2005 benchmark functions
CLPSO CLPSO:DE/rand/1 CLPSO:DE/rand/2 CLPSO:TDE/rand/1

fi D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
f1 30 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 =

50 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 =
f2 30 3.828e+02 3.828e+02 1.060e+02 0.000e+000.000e+00 0.000e+00 + 0.000e+00 1.000e-04 3.030e-04 + 0.000e+000.000e+00 0.000e+00 +

50 1.013e+04 1.021e+04 1.357e+03 2.100e-02 3.002e-02 3.293e-02 + 1.014e+04 9.933e+03 2.373e+03 = 1.027e+011.128e+01 7.425e+00 +
f3 30 1.204e+07 1.188e+07 3.107e+06 3.336e+053.406e+05 1.339e+05 + 4.047e+054.646e+05 2.456e+05 + 3.712e+054.149e+05 1.674e+05 +

50 5.084e+07 4.930e+07 1.161e+07 6.927e+056.661e+05 2.143e+05 + 5.399e+07 5.356e+07 1.281e+07 = 1.249e+061.439e+06 6.393e+05 +
f4 30 5.481e+03 5.396e+03 1.250e+03 7.700e-02 3.318e-01 8.563e-01 + 9.700e-011.456e+00 1.583e+00 + 4.900e-02 1.709e-01 2.517e-01 +

50 3.477e+04 3.428e+04 5.637e+03 2.968e+023.415e+02 2.116e+02 + 3.341e+043.254e+04 5.068e+03 = 1.563e+031.704e+03 6.936e+02 +
f5 30 4.011e+03 4.001e+03 4.276e+02 2.712e+032.683e+03 5.203e+02 + 1.213e+031.277e+03 5.506e+02 + 2.937e+033.060e+03 6.308e+02 +

50 9.753e+03 9.698e+03 7.903e+02 3.064e+033.070e+03 4.047e+02 + 8.794e+038.800e+03 7.676e+02 + 3.888e+033.895e+03 5.917e+02 +
f6 30 7.369e+00 1.779e+01 2.285e+01 1.102e+01 3.727e+01 6.968e+01 = 1.340e-01 5.998e-01 1.191e+00 + 7.037e+01 6.755e+01 5.690e+01 –

50 8.998e+01 8.705e+01 3.757e+01 4.090e+016.993e+01 6.255e+01 + 4.240e+015.339e+01 2.736e+01 + 4.263e+016.680e+01 3.517e+01 +
f7 30 4.696e+034.696e+03 1.837e-12 4.696e+03 4.696e+03 1.837e-12 = 4.696e+03 4.696e+03 1.837e-12 = 4.696e+03 4.696e+03 1.837e-12 =

50 6.195e+036.195e+03 4.594e-12 6.195e+03 6.195e+03 4.594e-12 = 6.195e+03 6.195e+03 5.345e-03 – 6.195e+03 6.195e+03 4.594e-12 =
f8 30 2.072e+012.072e+01 5.905e-02 2.098e+01 2.097e+01 5.312e-02 – 2.097e+01 2.096e+01 7.255e-02 – 2.098e+01 2.098e+01 5.331e-02 –

50 2.105e+012.104e+01 4.617e-02 2.117e+01 2.116e+01 4.574e-02 – 2.117e+01 2.116e+01 3.962e-02 – 2.118e+01 2.117e+01 3.914e-02 –
f9 30 0.000e+000.000e+00 0.000e+00 1.990e+01 2.020e+01 1.056e+01 – 2.436e+00 2.792e+00 1.584e+00 – 2.479e+00 5.407e+00 7.859e+00 –

50 0.000e+000.000e+00 0.000e+00 3.333e+01 3.271e+01 4.353e+00 – 3.350e+01 3.279e+01 4.242e+00 – 3.373e+01 3.319e+01 4.141e+00 –
f10 30 8.008e+01 8.023e+01 1.495e+01 4.531e+014.588e+01 1.263e+01 + 8.011e+01 7.937e+01 1.377e+01 = 5.297e+015.392e+01 1.203e+01 +

50 2.183e+02 2.173e+02 2.000e+01 1.871e+021.863e+02 2.020e+01 + 2.974e+02 2.955e+02 1.961e+01 – 1.765e+021.749e+02 2.034e+01 +
f11 30 2.548e+012.526e+01 1.854e+00 2.663e+01 2.533e+01 4.641e+00 – 2.761e+01 2.744e+01 1.658e+00 – 2.705e+01 2.684e+01 1.670e+00 –

50 5.263e+015.268e+01 2.212e+00 5.751e+01 5.730e+01 1.923e+00 – 5.783e+01 5.784e+01 1.716e+00 – 5.686e+01 5.698e+01 1.847e+00 –
f12 30 1.293e+04 1.324e+04 4.162e+03 2.044e+033.073e+03 2.817e+03 + 2.637e+04 2.540e+04 5.554e+03 – 1.930e+033.118e+03 3.229e+03 +

50 8.996e+04 8.949e+04 2.001e+04 1.051e+041.280e+04 9.229e+03 + 1.894e+05 1.911e+05 3.140e+04 – 7.859e+031.079e+04 9.715e+03 +
f13 30 1.979e+001.888e+00 3.977e-01 3.679e+00 3.785e+00 1.082e+00 – 4.396e+00 4.461e+00 5.141e-01 – 3.893e+00 4.088e+00 6.032e-01 –

50 7.093e+007.074e+00 6.947e-01 1.276e+01 1.267e+01 1.451e+00 – 1.615e+01 1.600e+01 1.238e+00 – 1.320e+01 1.318e+01 1.332e+00 –
f14 30 1.248e+01 1.248e+01 3.051e-01 1.254e+01 1.255e+01 3.082e-01 = 1.275e+01 1.271e+01 2.222e-01 – 1.245e+011.239e+01 3.126e-01 =

50 2.214e+012.212e+01 2.642e-01 2.254e+01 2.250e+01 2.506e-01 – 2.263e+01 2.262e+01 1.905e-01 – 2.245e+01 2.242e+01 2.147e-01 –
f15 30 4.116e+015.623e+01 5.212e+01 3.106e+02 3.471e+02 8.166e+01 – 4.000e+02 3.781e+02 7.639e+01 – 3.593e+02 3.628e+02 7.260e+01 –

50 1.301e+021.422e+02 5.276e+01 4.000e+02 3.439e+02 8.621e+01 – 4.000e+02 3.801e+02 6.044e+01 – 4.000e+02 3.423e+02 9.073e+01 –
f16 30 1.413e+02 1.453e+02 3.171e+01 7.145e+011.260e+02 1.226e+02 + 1.036e+021.032e+02 1.660e+01 + 7.016e+011.238e+02 1.270e+02 +

50 1.967e+02 1.969e+02 3.751e+01 1.344e+021.427e+02 5.437e+01 + 2.127e+02 2.129e+02 1.412e+01 – 1.262e+021.398e+02 5.774e+01 +
f17 30 2.084e+02 2.134e+02 3.624e+01 1.074e+021.503e+02 1.337e+02 + 1.557e+021.585e+02 4.209e+01 + 1.093e+022.001e+02 1.521e+02 +

50 2.767e+02 2.822e+02 3.860e+01 1.935e+022.005e+02 3.869e+01 + 2.708e+022.716e+02 1.624e+01 = 1.877e+021.938e+02 3.733e+01 +
f18 30 9.132e+02 8.993e+02 7.031e+01 9.199e+02 9.008e+02 4.830e+01 – 9.074e+029.078e+02 1.582e+00 + 9.238e+02 9.073e+02 4.805e+01 –

50 9.430e+02 9.414e+02 1.894e+01 9.333e+029.313e+02 2.106e+01 + 9.339e+029.287e+02 2.658e+01 + 9.354e+029.274e+02 3.420e+01 +
f19 30 9.140e+02 9.102e+02 1.853e+01 9.192e+02 8.921e+02 5.571e+01 – 9.078e+029.058e+02 1.536e+01 + 9.226e+02 9.176e+02 3.155e+01 –

50 9.435e+02 9.418e+02 1.317e+01 9.328e+029.184e+02 9.196e+01 + 9.353e+029.325e+02 1.912e+01 + 9.335e+029.234e+02 3.782e+01 +
f20 30 9.132e+02 9.119e+02 8.572e+00 9.226e+02 9.173e+02 3.076e+01 – 9.085e+029.066e+02 1.547e+01 + 9.273e+02 9.095e+02 4.903e+01 –

50 9.430e+02 9.438e+02 4.918e+00 9.327e+029.247e+02 3.453e+01 + 9.345e+029.290e+02 2.660e+01 + 9.349e+029.345e+02 1.121e+01 +
f21 30 5.000e+02 5.000e+02 0.000e+00 5.000e+02 5.520e+02 1.781e+02 – 5.000e+02 5.060e+02 4.243e+01 = 5.000e+02 6.622e+02 2.806e+02 –

50 5.000e+02 5.000e+02 0.000e+00 5.000e+02 5.060e+02 4.243e+01 = 5.000e+02 5.000e+02 0.000e+00 = 5.000e+02 5.329e+02 1.384e+02 =
f22 30 9.603e+02 9.609e+02 1.477e+01 9.143e+029.133e+02 1.587e+01 + 9.191e+029.181e+02 1.020e+01 + 9.093e+029.099e+02 1.552e+01 +

50 9.912e+02 9.917e+02 7.240e+00 9.614e+029.619e+02 8.822e+00 + 9.935e+02 9.934e+02 7.254e+00 = 9.596e+029.572e+02 8.136e+00 +
f23 30 5.000e+02 5.000e+02 0.000e+00 5.000e+02 6.110e+02 2.349e+02 – 5.000e+02 5.060e+02 4.243e+01 = 5.000e+02 5.988e+02 2.338e+02 –

50 5.000e+02 5.000e+02 0.000e+00 5.000e+02 5.251e+02 1.087e+02 = 5.000e+02 5.000e+02 0.000e+00 = 5.000e+02 5.120e+02 5.938e+01 =
f24 30 2.000e+02 2.000e+02 0.000e+00 2.000e+02 2.000e+02 0.000e+00 = 2.000e+02 2.000e+02 0.000e+00 = 2.000e+02 2.000e+02 0.000e+00 =

50 2.000e+02 2.000e+02 4.950e-03 2.000e+02 2.000e+02 0.000e+00 = 2.000e+02 2.000e+02 0.000e+00 = 2.000e+02 2.000e+02 0.000e+00 =
f25 30 1.659e+03 1.659e+03 4.102e+00 1.648e+031.646e+03 8.901e+00 + 1.664e+03 1.664e+03 3.667e+00 – 1.643e+031.643e+03 8.630e+00 +

50 1.701e+03 1.702e+03 2.610e+00 1.697e+031.696e+03 5.477e+00 + 1.709e+03 1.709e+03 2.369e+00 – 1.692e+031.691e+03 5.838e+00 +
Total number of (+/–/=): (24/16/10) Total number of (+/–/=): (16/19/15) Total number of (+/–/=): (24/17/9)

CLPSO:DE/rand/1 and CLPSO:TDE/rand/1, as well as be-
tween CLPSO and CLPSO:TDE/rand/1 algorithms.

Trying to rationalize the aforementioned behavior, we may
concentrate on CLPSO characteristics along with Differential
Evolution dynamics. CLPSO updates each particle’s velocity
by utilizing a novel learning scheme based on the swarm’s best
personal positions. Specifically, CLPSO uses the best positions
of the other particles as exemplars to be learned from. This
strategy is applied to each dimension of a particle, producing a
scheme in which each particle may potentially learn from dif-
ferent exemplars per dimension. Hence, CLPSO permits the
particles to have more exemplars to learn from and a potentially
larger search space to fly over. CLPSO has exhibited great per-
formance gains mostly on multimodal functions, while it was
not the best choice for solving unimodal problems [52]. As
previously described, explorative DE mutation strategiestend
to rapidly spread the individuals on the vicinity of the prob-

lem’s minima. Depending on the problem at hand, the combina-
tion of the aforementioned characteristics may lead to conflict-
ing effects. On unimodal benchmark functions, it may result
in a more exploitative behavior and enhance its performance,
while on the multimodal functions it may rapidly spread the
best personal positions to many optima and enhance its explo-
rative characteristics. Although the latter may increase its per-
formance, it may also quickly drive the best personal positions
to a stagnation stage [50] and subsequently hinder the perfor-
mance of the hybrid PSO variant.

5.3. Hybridization of PSO with State-of-the-art DE variants

The experimental results end with the utilization of pop-
ular DE algorithms into the aforementioned state-of-the-art
PSO variants. To keep the article compact we will incorpo-
rate four DE algorithms into the BBPSO and CLPSO variants,
namely the Self-Adaptive Control Parameters in DE algorithm
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Table 10: Error values of the BBPSO algorithm and their corresponding hybrid DE variants on the 30 and 50–dimensional CEC2005 benchmark functions
f1 f2 f3 f4

Algorithm D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
BBPSO 30 0.000e+000.000e+00 0.000e+00 6.000e-03 9.260e-03 8.480e-03 1.243e+06 1.295e+06 5.728e+05 1.962e+03 2.307e+03 1.188e+03

50 0.000e+000.000e+00 0.000e+00 2.407e+022.886e+02 1.452e+02 3.693e+06 3.709e+06 9.352e+05 3.026e+04 2.965e+04 6.094e+03
BBPSO:jDE 30 0.000e+000.000e+00 0.000e+00 = 7.500e-03 2.158e-02 4.149e-02 =1.174e+06 1.249e+06 5.851e+05 =1.479e+03 1.654e+03 9.787e+02 +

50 0.000e+000.000e+00 0.000e+00 =2.456e+02 2.779e+02 1.173e+02 =3.624e+06 3.767e+06 1.067e+06 =2.789e+04 2.911e+04 6.197e+03 =
BBPSO:JADE 30 0.000e+000.000e+00 0.000e+00 = 3.000e-03 1.166e-02 2.664e-02 +1.314e+06 1.441e+06 6.787e+05 =9.637e+02 1.330e+03 9.517e+02 +

50 0.000e+000.000e+00 0.000e+00 =2.527e+02 2.748e+02 1.226e+02 =3.619e+063.815e+06 1.077e+06 =2.622e+04 2.627e+04 5.887e+03 +
BBPSO:SADE 30 0.000e+000.000e+00 0.000e+00 = 6.000e-03 1.304e-02 2.119e-02 =1.396e+06 1.472e+06 6.310e+05 =9.130e+02 1.083e+03 6.935e+02 +

50 0.000e+000.000e+00 0.000e+00 =2.616e+02 2.803e+02 1.379e+02 =4.127e+06 4.276e+06 1.360e+06 –2.208e+042.257e+04 5.153e+03 +
BBPSO:DEGL 30 0.000e+000.000e+00 0.000e+00 = 1.300e-02 2.044e-02 1.992e-02 –1.152e+061.244e+06 5.385e+05 =8.792e+029.866e+02 6.383e+02 +

50 0.000e+000.000e+00 0.000e+00 =2.432e+02 2.753e+02 1.425e+02 =3.702e+06 3.854e+06 1.284e+06 =2.211e+04 2.302e+04 6.255e+03 +
f5 f6 f7 f8

BBPSO 30 5.243e+03 5.314e+03 1.033e+03 1.148e+012.796e+01 4.218e+01 4.696e+034.696e+03 5.039e-01 2.095e+012.094e+01 5.696e-02
50 1.295e+04 1.262e+04 1.969e+03 4.016e+015.831e+01 4.576e+01 6.195e+036.197e+03 4.553e+00 2.115e+01 2.114e+01 2.978e-02

BBPSO:jDE 30 4.585e+03 4.733e+03 9.571e+02 +1.802e+01 3.151e+01 3.791e+01 =4.696e+034.696e+03 1.098e-02 =2.096e+01 2.096e+01 4.627e-02 =
50 1.224e+04 1.212e+04 1.641e+03 =8.146e+01 7.447e+01 4.285e+01 =6.195e+036.196e+03 1.758e+00 =2.114e+01 2.114e+01 3.791e-02 =

BBPSO:JADE 30 4.726e+03 4.657e+03 7.968e+02 +1.616e+01 3.926e+01 7.156e+01 =4.696e+034.696e+03 1.414e-03 =2.095e+012.095e+01 4.929e-02 =
50 1.164e+04 1.162e+04 1.791e+03 +7.508e+01 6.557e+01 3.765e+01 =6.195e+036.196e+03 1.006e+00 +2.113e+012.113e+01 4.247e-02 =

BBPSO:SADE 30 4.775e+03 4.770e+03 1.059e+03 +1.887e+01 4.006e+01 4.486e+01 –4.696e+034.696e+03 2.399e-03 =2.097e+01 2.096e+01 6.451e-02 =
50 1.166e+04 1.181e+04 1.643e+03 +7.619e+01 7.304e+01 5.615e+01 =6.195e+036.195e+03 2.709e-01 +2.114e+01 2.113e+01 3.721e-02 =

BBPSO:DEGL 30 4.578e+034.480e+03 1.035e+03 +2.040e+01 4.057e+01 4.745e+01 –4.696e+034.696e+03 1.116e-01 =2.097e+01 2.095e+01 5.331e-02 =
50 1.069e+041.076e+04 1.942e+03 +7.396e+01 7.125e+01 5.296e+01 =6.195e+036.197e+03 4.057e+00 =2.114e+01 2.114e+01 3.603e-02 =

f9 f10 f11 f12

BBPSO 30 5.622e+01 5.635e+01 1.079e+01 7.213e+01 7.556e+01 1.919e+01 2.790e+012.802e+01 1.926e+00 1.590e+032.585e+03 2.746e+03
50 1.338e+02 1.329e+02 2.131e+01 1.691e+02 1.755e+02 4.101e+01 5.483e+015.471e+01 3.821e+00 1.447e+04 1.505e+04 9.270e+03

BBPSO:jDE 30 1.232e+01 1.335e+01 5.592e+00 +7.539e+01 8.057e+01 1.834e+01 =2.835e+01 2.790e+01 2.507e+00 =1.721e+03 2.834e+03 3.284e+03 =
50 3.159e+01 3.377e+01 8.744e+00 +1.726e+02 1.754e+02 3.789e+01 =5.558e+01 5.532e+01 3.098e+00 =1.341e+041.480e+04 9.558e+03 =

BBPSO:JADE 30 2.836e+01 2.973e+01 8.438e+00 +8.009e+01 8.211e+01 2.184e+01 =2.801e+01 2.771e+01 2.939e+00 =1.904e+03 2.754e+03 2.711e+03 =
50 8.353e+01 7.963e+01 1.457e+01 +1.512e+021.605e+02 3.897e+01 =5.527e+01 5.516e+01 2.880e+00 =1.447e+04 1.708e+04 9.857e+03 =

BBPSO:SADE 30 4.792e+005.704e+00 3.343e+00 +6.965e+017.927e+01 2.813e+01 =2.838e+01 2.804e+01 2.568e+00 =2.045e+03 2.841e+03 2.754e+03 =
50 1.240e+011.261e+01 4.482e+00 +1.740e+02 1.709e+02 3.390e+01 =5.556e+01 5.451e+01 3.592e+00 =2.010e+04 1.935e+04 1.053e+04 –

BBPSO:DEGL 30 4.875e+01 5.096e+01 1.355e+01 +7.213e+01 7.223e+01 2.067e+01 =2.795e+01 2.771e+01 2.493e+00 =3.136e+03 4.576e+03 4.325e+03 –
50 1.254e+02 1.221e+02 1.952e+01 +1.562e+02 1.593e+02 4.102e+01 +5.505e+01 5.474e+01 2.999e+00 =1.408e+04 1.571e+04 8.759e+03 =

f13 f14 f15 f16

BBPSO 30 6.252e+00 6.503e+00 1.855e+00 1.237e+01 1.229e+01 3.984e-01 3.033e+02 3.249e+02 8.537e+01 1.187e+02 1.356e+02 5.300e+01
50 1.763e+01 1.839e+01 4.973e+00 2.223e+01 2.209e+01 4.659e-01 2.511e+02 2.834e+02 8.431e+01 1.318e+02 1.408e+02 3.960e+01

BBPSO:jDE 30 3.909e+00 3.964e+00 1.116e+00 +1.229e+011.229e+01 3.157e-01 =3.000e+022.831e+02 1.036e+02 =1.214e+02 1.616e+02 9.723e+01 =
50 1.059e+01 1.152e+01 3.881e+00 +2.221e+01 2.214e+01 3.570e-01 =2.346e+02 2.692e+02 7.953e+01 =1.306e+02 1.373e+02 2.888e+01 =

BBPSO:JADE 30 4.971e+00 5.284e+00 1.664e+00 +1.246e+01 1.239e+01 3.553e-01 =3.000e+023.311e+02 8.566e+01 =1.358e+02 1.711e+02 1.049e+02 =
50 1.521e+01 1.532e+01 4.473e+00 +2.209e+012.207e+01 3.390e-01 =2.388e+02 2.869e+02 9.089e+01 =1.304e+02 1.394e+02 5.168e+01 =

BBPSO:SADE 30 2.104e+002.249e+00 5.793e-01 +1.239e+01 1.238e+01 4.176e-01 =3.000e+022.891e+02 9.370e+01 =1.140e+021.390e+02 7.860e+01 =
50 5.190e+005.265e+00 1.102e+00 +2.219e+01 2.210e+01 3.993e-01 =2.071e+022.688e+02 8.621e+01 =1.340e+02 1.405e+02 3.155e+01 =

BBPSO:DEGL 30 4.807e+00 4.755e+00 1.279e+00 +1.248e+01 1.245e+01 3.008e-01 –3.000e+023.244e+02 8.845e+01 =1.251e+02 1.597e+02 9.832e+01 =
50 1.328e+01 1.369e+01 4.105e+00 +2.209e+012.205e+01 4.329e-01 =3.452e+02 3.145e+02 8.870e+01 =1.190e+021.289e+02 5.551e+01 +

f17 f18 f19 f20

BBPSO 30 1.580e+02 1.737e+02 6.599e+01 9.270e+02 9.101e+02 4.536e+01 9.247e+02 9.209e+02 3.222e+01 9.247e+02 9.167e+02 3.558e+01
50 2.038e+02 2.099e+02 4.542e+01 9.928e+02 9.935e+02 2.367e+01 9.866e+02 9.913e+02 1.812e+01 9.868e+02 9.890e+02 2.113e+01

BBPSO:jDE 30 1.433e+02 1.640e+02 7.868e+01 =9.249e+02 9.191e+02 3.129e+01 =9.238e+02 9.156e+02 3.488e+01 =9.231e+02 9.202e+02 2.576e+01 =
50 2.037e+02 2.104e+02 4.645e+01 =9.826e+02 9.835e+02 3.118e+01 +9.930e+02 9.921e+02 1.728e+01 =9.896e+02 9.860e+02 3.296e+01 =

BBPSO:JADE 30 1.410e+021.842e+02 9.689e+01 =9.215e+029.068e+02 4.400e+01 +9.265e+02 9.149e+02 3.935e+01 =9.223e+029.095e+02 4.115e+01 =
50 1.941e+02 2.004e+02 6.386e+01 =9.774e+029.818e+02 1.820e+01 +9.869e+02 9.872e+02 1.819e+01 =9.910e+02 9.904e+02 1.693e+01 =

BBPSO:SADE 30 1.446e+02 1.616e+02 6.112e+01 =9.266e+02 9.211e+02 3.201e+01 =9.227e+029.128e+02 3.856e+01 =9.249e+02 9.167e+02 3.540e+01 =
50 2.101e+02 2.062e+02 4.960e+01 =9.849e+02 9.879e+02 1.615e+01 =9.815e+029.843e+02 1.978e+01 +9.838e+02 9.804e+02 4.138e+01 =

BBPSO:DEGL 30 1.435e+02 1.789e+02 1.050e+02 =9.228e+02 9.166e+02 3.037e+01 =9.246e+02 9.135e+02 3.880e+01 =9.227e+02 9.036e+02 4.970e+01 =
50 1.859e+021.910e+02 5.182e+01 =9.823e+02 9.840e+02 1.814e+01 +9.851e+029.846e+02 1.684e+01 =9.729e+029.713e+02 3.957e+01 +

f21 f22 f23 f24

BBPSO 30 5.000e+025.060e+02 4.243e+01 9.649e+02 9.675e+02 2.823e+01 5.000e+025.653e+02 1.887e+02 2.000e+022.000e+02 0.000e+00
50 5.000e+025.199e+02 1.063e+02 1.006e+03 1.006e+03 1.564e+01 5.000e+025.000e+02 0.000e+00 2.000e+022.211e+02 1.374e+02

BBPSO:jDE 30 5.000e+025.263e+02 9.080e+01 =9.486e+029.525e+02 2.552e+01 +5.000e+025.510e+02 1.517e+02 =2.000e+022.000e+02 0.000e+00 =
50 5.000e+025.000e+02 0.000e+00 =1.004e+031.004e+03 1.626e+01 =5.000e+025.272e+02 1.347e+02 =2.000e+022.187e+02 1.325e+02 =

BBPSO:JADE 30 5.000e+025.252e+02 1.090e+02 =9.488e+02 9.514e+02 2.365e+01 +5.000e+025.592e+02 1.854e+02 =2.000e+022.000e+02 0.000e+00 =
50 5.000e+025.060e+02 4.243e+01 =1.010e+03 1.008e+03 1.336e+01 =5.000e+025.262e+02 1.152e+02 =2.000e+022.200e+02 1.413e+02 =

BBPSO:SADE 30 5.000e+025.507e+02 1.513e+02 =9.671e+02 9.679e+02 2.659e+01 =5.000e+025.386e+02 1.419e+02 =2.000e+022.000e+02 0.000e+00 =
50 5.000e+025.062e+02 4.355e+01 =1.006e+03 1.008e+03 1.539e+01 =5.000e+025.334e+02 1.407e+02 =2.000e+022.811e+02 2.779e+02 =

BBPSO:DEGL 30 5.000e+025.000e+02 0.000e+00 =9.522e+02 9.559e+02 2.997e+01 +5.000e+025.137e+02 9.722e+01 =2.000e+022.000e+02 0.000e+00 =
50 5.000e+025.141e+02 9.977e+01 =1.005e+03 1.003e+03 1.306e+01 =5.000e+025.000e+02 0.000e+00 =2.000e+022.603e+02 2.410e+02 =

f25

BBPSO 30 1.669e+03 1.668e+03 7.609e+00
50 1.724e+03 1.724e+03 6.689e+00

BBPSO:jDE 30 1.665e+031.666e+03 6.955e+00 =
Total number of (+/–/=): (9/0/41)

50 1.720e+031.720e+03 6.691e+00 +
BBPSO:JADE 30 1.670e+03 1.669e+03 7.077e+00 =

Total number of (+/–/=): (13/0/37)
50 1.723e+03 1.723e+03 6.704e+00 =

BBPSO:SADE 30 1.667e+03 1.668e+03 6.660e+00 =
Total number of (+/–/=): (10/3/37)

50 1.723e+03 1.724e+03 7.326e+00 =
BBPSO:DEGL 30 1.667e+03 1.667e+03 6.809e+00 =

Total number of (+/–/=): (13/4/33)
50 1.722e+03 1.722e+03 7.218e+00 =
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Table 11: Error values of the CLPSO algorithm and their corresponding hybrid DE variants on the 30 and 50–dimensional CEC2005 benchmark functions
f1 f2 f3 f4

Algorithm D Median Mean St.D. Median Mean St.D. Median Mean St.D. Median Mean St.D.
CLPSO 30 0.000e+000.000e+00 0.000e+00 3.828e+02 3.828e+02 1.060e+02 1.204e+07 1.188e+07 3.107e+06 5.481e+03 5.396e+03 1.250e+03

50 0.000e+000.000e+00 0.000e+00 1.013e+04 1.021e+04 1.357e+03 5.084e+07 4.930e+07 1.161e+07 3.477e+04 3.428e+04 5.637e+03
CLPSO:jDE 30 0.000e+000.000e+00 0.000e+00 =3.384e+02 3.316e+02 1.032e+02 +1.145e+07 1.120e+07 3.205e+06 =5.132e+03 5.106e+03 1.634e+03 =

50 0.000e+000.000e+00 0.000e+00 =9.389e+03 9.517e+03 1.574e+03 +5.261e+07 5.196e+07 1.053e+07 =3.425e+04 3.427e+04 5.186e+03 =
CLPSO:JADE 30 0.000e+000.000e+00 0.000e+00 =1.884e+02 1.951e+02 6.106e+01 +1.000e+07 9.867e+06 3.015e+06 +4.194e+03 4.229e+03 1.055e+03 +

50 0.000e+000.000e+00 0.000e+00 =7.163e+03 7.267e+03 1.331e+03 +3.768e+073.813e+07 8.497e+06 +2.857e+04 2.859e+04 5.809e+03 +
CLPSO:SADE 30 0.000e+000.000e+00 0.000e+00 =1.172e+02 1.365e+02 7.185e+01 +1.188e+07 1.229e+07 3.305e+06 =3.229e+03 3.256e+03 1.163e+03 +

50 0.000e+000.000e+00 0.000e+00 =3.652e+034.199e+03 1.631e+03 +5.332e+07 5.227e+07 9.488e+06 =2.347e+042.348e+04 4.820e+03 +
CLPSO:DEGL 30 0.000e+000.000e+00 0.000e+00 =1.131e+021.144e+02 3.671e+01 +5.214e+065.313e+06 1.518e+06 +2.935e+033.101e+03 1.018e+03 +

50 0.000e+000.000e+00 0.000e+00 =6.699e+03 6.928e+03 1.277e+03 +3.709e+07 3.689e+07 9.227e+06 +2.745e+04 2.808e+04 4.855e+03 +
f5 f6 f7 f8

CLPSO 30 4.011e+03 4.001e+03 4.276e+02 7.369e+00 1.779e+01 2.285e+01 4.696e+034.696e+03 1.837e-12 2.072e+012.072e+01 5.905e-02
50 9.753e+03 9.698e+03 7.903e+02 8.998e+018.705e+01 3.757e+01 6.195e+036.195e+03 4.594e-12 2.105e+012.104e+01 4.617e-02

CLPSO:jDE 30 3.829e+03 3.795e+03 4.181e+02 +7.038e+001.744e+01 2.225e+01 =4.696e+034.696e+03 1.837e-12 =2.074e+01 2.072e+01 6.404e-02 =
50 9.311e+03 9.268e+03 8.360e+02 +1.038e+02 1.031e+02 4.247e+01 =6.195e+036.195e+03 4.594e-12 =2.106e+01 2.105e+01 5.017e-02 =

CLPSO:JADE 30 3.778e+03 3.836e+03 3.654e+02 +1.060e+01 1.984e+01 2.327e+01 =4.696e+034.696e+03 1.837e-12 =2.075e+01 2.073e+01 7.820e-02 =
50 9.124e+039.222e+03 9.158e+02 +9.471e+01 9.106e+01 3.912e+01 =6.195e+036.195e+03 4.594e-12 =2.105e+012.105e+01 4.404e-02 =

CLPSO:SADE 30 3.983e+03 4.026e+03 4.631e+02 =1.563e+01 2.283e+01 2.454e+01 =4.696e+034.696e+03 1.837e-12 =2.074e+01 2.074e+01 5.717e-02 =
50 9.624e+03 9.619e+03 9.466e+02 =9.110e+01 9.131e+01 3.783e+01 =6.195e+036.195e+03 4.594e-12 =2.105e+012.105e+01 4.747e-02 =

CLPSO:DEGL 30 3.650e+033.640e+03 4.758e+02 +9.552e+00 1.912e+01 2.190e+01 =4.696e+034.696e+03 1.837e-12 =2.074e+01 2.074e+01 5.682e-02 =
50 9.131e+03 9.085e+03 9.073e+02 +9.070e+01 9.109e+01 3.637e+01 =6.195e+036.195e+03 4.594e-12 =2.107e+01 2.106e+01 3.639e-02 =

f9 f10 f11 f12

CLPSO 30 0.000e+000.000e+00 0.000e+00 8.008e+01 8.023e+01 1.495e+01 2.548e+01 2.526e+01 1.854e+00 1.293e+04 1.324e+04 4.162e+03
50 0.000e+000.000e+00 0.000e+00 2.183e+02 2.173e+02 2.000e+01 5.263e+015.268e+01 2.212e+00 8.996e+04 8.949e+04 2.001e+04

CLPSO:jDE 30 0.000e+000.000e+00 0.000e+00 =7.661e+01 7.760e+01 1.517e+01 =2.576e+01 2.541e+01 2.171e+00 =1.168e+041.320e+04 4.979e+03 =
50 0.000e+000.000e+00 0.000e+00 =2.190e+02 2.162e+02 2.560e+01 =5.304e+01 5.286e+01 1.965e+00 =8.834e+04 8.706e+04 1.916e+04 =

CLPSO:JADE 30 0.000e+00 1.990e-02 1.407e-01 =7.634e+01 7.616e+01 1.184e+01 =2.541e+01 2.529e+01 1.496e+00 =1.226e+04 1.263e+04 4.373e+03 =
50 0.000e+00 1.990e-02 1.407e-01 =2.083e+02 2.111e+02 2.337e+01 =5.277e+01 5.271e+01 1.916e+00 =8.098e+04 8.215e+04 1.577e+04 =

CLPSO:SADE 30 0.000e+000.000e+00 0.000e+00 =7.139e+017.468e+01 1.474e+01 =2.577e+01 2.539e+01 1.523e+00 =1.409e+04 1.324e+04 4.115e+03 =
50 0.000e+000.000e+00 0.000e+00 =2.176e+02 2.177e+02 2.397e+01 =5.276e+01 5.283e+01 1.807e+00 =7.727e+047.933e+04 1.722e+04 +

CLPSO:DEGL 30 0.000e+000.000e+00 0.000e+00 =7.408e+01 7.355e+01 1.145e+01 +2.514e+012.502e+01 1.380e+00 =1.298e+04 1.333e+04 4.428e+03 =
50 0.000e+00 1.990e-02 1.407e-01 =2.022e+022.010e+02 2.098e+01 +5.331e+01 5.298e+01 2.258e+00 =9.130e+04 9.142e+04 1.726e+04 =

f13 f14 f15 f16

CLPSO 30 1.979e+00 1.888e+00 3.977e-01 1.248e+011.248e+01 3.051e-01 4.116e+01 5.623e+01 5.212e+01 1.413e+02 1.453e+02 3.171e+01
50 7.093e+00 7.074e+00 6.947e-01 2.214e+01 2.212e+01 2.642e-01 1.301e+02 1.422e+02 5.276e+01 1.967e+02 1.969e+02 3.751e+01

CLPSO:jDE 30 2.085e+00 2.000e+00 3.761e-01 =1.257e+01 1.250e+01 3.046e-01 =2.857e+014.064e+01 4.865e+01 +1.393e+02 1.440e+02 3.052e+01 =
50 6.852e+00 6.995e+00 7.806e-01 =2.223e+01 2.218e+01 3.182e-01 =1.096e+021.228e+02 5.394e+01 =1.948e+02 1.998e+02 3.684e+01 =

CLPSO:JADE 30 2.131e+00 2.107e+00 2.973e-01 –1.255e+01 1.252e+01 2.482e-01 =5.075e+01 7.378e+01 6.405e+01 =1.237e+021.293e+02 3.214e+01 +
50 7.303e+00 7.290e+00 6.558e-01 =2.223e+01 2.218e+01 2.394e-01 =1.337e+02 1.357e+02 4.519e+01 =1.798e+02 1.811e+02 3.379e+01 +

CLPSO:SADE 30 1.809e+001.803e+00 3.047e-01 =1.253e+01 1.248e+01 3.113e-01 =5.907e+01 8.021e+01 7.144e+01 =1.407e+02 1.455e+02 3.519e+01 =
50 4.431e+004.510e+00 6.041e-01 +2.232e+01 2.223e+01 2.663e-01 –1.355e+02 1.368e+02 5.355e+01 =1.907e+02 1.996e+02 3.631e+01 =

CLPSO:DEGL 30 2.057e+00 2.043e+00 2.510e-01 =1.258e+01 1.259e+01 2.758e-01 =4.277e+01 6.249e+01 5.778e+01 =1.272e+02 1.292e+02 2.906e+01 +
50 7.037e+00 7.078e+00 7.025e-01 =2.212e+012.209e+01 3.147e-01 =1.227e+02 1.390e+02 4.285e+01 =1.759e+021.792e+02 3.028e+01 +

f17 f18 f19 f20

CLPSO 30 2.084e+02 2.134e+02 3.624e+01 9.132e+02 8.993e+02 7.031e+01 9.140e+02 9.102e+02 1.853e+01 9.132e+02 9.119e+02 8.572e+00
50 2.767e+02 2.822e+02 3.860e+01 9.430e+02 9.414e+02 1.894e+01 9.435e+02 9.418e+02 1.317e+01 9.430e+02 9.438e+02 4.918e+00

CLPSO:jDE 30 1.907e+02 1.924e+02 4.072e+01 +9.138e+02 9.113e+02 1.610e+01 =9.133e+02 9.092e+02 2.092e+01 =9.133e+02 8.957e+02 4.114e+01 =
50 2.674e+02 2.718e+02 3.792e+01 =9.408e+029.416e+02 5.919e+00 +9.410e+02 9.415e+02 5.000e+00 =9.411e+02 9.418e+02 4.779e+00 +

CLPSO:JADE 30 1.932e+02 1.938e+02 4.534e+01 +9.123e+02 9.067e+02 2.437e+01 =9.133e+02 9.067e+02 2.615e+01 =9.134e+02 9.048e+02 2.968e+01 =
50 2.625e+022.644e+02 3.457e+01 +9.428e+02 9.430e+02 6.845e+00 =9.406e+029.418e+02 5.408e+00 =9.415e+02 9.423e+02 4.524e+00 =

CLPSO:SADE 30 2.041e+02 2.086e+02 4.078e+01 =9.135e+02 9.113e+02 1.598e+01 =9.132e+02 9.094e+02 2.016e+01 =9.129e+02 9.089e+02 2.073e+01 =
50 2.631e+02 2.655e+02 3.555e+01 +9.425e+02 9.421e+02 4.274e+00 =9.419e+02 9.431e+02 5.518e+00 =9.418e+02 9.417e+02 3.588e+00 +

CLPSO:DEGL 30 1.826e+021.911e+02 4.342e+01 +9.122e+029.057e+02 2.632e+01 +9.130e+029.041e+02 3.018e+01 +9.126e+029.063e+02 2.605e+01 +
50 2.646e+02 2.649e+02 3.706e+01 +9.412e+02 9.396e+02 1.669e+01 =9.420e+02 9.424e+02 5.561e+00 =9.407e+029.413e+02 4.348e+00 +

f21 f22 f23 f24

CLPSO 30 5.000e+025.000e+02 0.000e+00 9.603e+02 9.609e+02 1.477e+01 5.000e+025.000e+02 0.000e+00 2.000e+022.000e+02 0.000e+00
50 5.000e+025.000e+02 0.000e+00 9.912e+02 9.917e+02 7.240e+00 5.000e+025.000e+02 0.000e+00 2.000e+022.000e+02 4.950e-03

CLPSO:jDE 30 5.000e+025.000e+02 0.000e+00 =9.572e+02 9.591e+02 1.301e+01 =5.000e+025.000e+02 0.000e+00 =2.000e+022.000e+02 0.000e+00 =
50 5.000e+025.000e+02 0.000e+00 =9.868e+02 9.860e+02 8.951e+00 +5.000e+025.000e+02 0.000e+00 =2.000e+022.000e+02 1.414e-04 =

CLPSO:JADE 30 5.000e+024.990e+02 7.228e+00 =9.600e+02 9.590e+02 1.420e+01 =5.000e+025.000e+02 0.000e+00 =2.000e+022.000e+02 0.000e+00 =
50 5.000e+025.000e+02 0.000e+00 =9.875e+02 9.881e+02 8.608e+00 =5.000e+025.000e+02 0.000e+00 =2.000e+022.000e+02 0.000e+00 =

CLPSO:SADE 30 5.000e+025.000e+02 0.000e+00 =9.613e+02 9.600e+02 1.627e+01 =5.000e+025.000e+02 0.000e+00 =2.000e+022.000e+02 0.000e+00 =
50 5.000e+025.000e+02 0.000e+00 =9.897e+02 9.888e+02 8.623e+00 =5.000e+025.000e+02 0.000e+00 =2.000e+022.000e+02 0.000e+00 =

CLPSO:DEGL 30 5.000e+025.000e+02 0.000e+00 =9.522e+029.504e+02 1.464e+01 +5.000e+025.000e+02 0.000e+00 =2.000e+022.000e+02 0.000e+00 =
50 5.000e+025.000e+02 0.000e+00 =9.833e+029.817e+02 9.876e+00 +5.000e+025.000e+02 0.000e+00 =2.000e+022.000e+02 0.000e+00 =

f25

CLPSO 30 1.659e+031.659e+03 4.102e+00
50 1.701e+031.702e+03 2.610e+00

CLPSO:jDE 30 1.661e+03 1.660e+03 3.624e+00 =
Total number of (+/–/=): (9/0/41)

50 1.703e+03 1.702e+03 2.502e+00 =
CLPSO:JADE 30 1.661e+03 1.661e+03 3.167e+00 –

Total number of (+/–/=): (12/2/36)
50 1.702e+03 1.702e+03 2.293e+00 =

CLPSO:SADE 30 1.660e+03 1.660e+03 3.905e+00 =
Total number of (+/–/=): (8/1/41)

50 1.702e+03 1.702e+03 3.336e+00 =
CLPSO:DEGL 30 1.660e+03 1.660e+03 3.292e+00 =

Total number of (+/–/=): (20/0/30)
50 1.702e+03 1.701e+03 2.490e+00 =
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Figure 6: Empirical cumulative probability distribution of the solution error
values for the local version of theχPSO algorithm against the corresponding
hybrid DE variants on the 30 and 50–dimensional versions of the CEC 2005
benchmark functions.

(jDE) [7], the Adaptive Differential Evolution with optional
external archive algorithm (JADE) [111, 112], the Differential
Evolution algorithm with Strategy Adaptation (SaDE) [85, 86],
and the Differential Evolution with Global and Local Neighbor-
hoods (DEGL) [9, 14].

To this end, Table 10 and Table 11 demonstrate the ex-
perimental results of the proposed framework on BBPSO and
CLPSO respectively. It can be easily observed that, for almost
all functions, the resulting schemes exhibit either superior or
equal performance in comparison with the original PSO vari-
ants. The impact of the proposed framework is evident mostly
in the unimodal and the hybrid composition functions, in which
there are statistical significant performance differences. It has
to be noted that the behavior of the proposed framework on
CLPSO has totally changed. Its performance is greatly en-
hanced by the proposed framework, in particular with the in-
corporation of the DEGL algorithm (CLPSO:DEGL), which,
as presented in the next section, is one of the best performing
hybrids considered in this study.

In addition, among the four hybrid schemes the best perfor-
mance is observed in hybrids which implement either JADE or
DEGL algorithms. In the BBPSO case, both BBPSO:JADE and
BBPSO:DEGL result in significant performance gains in 13 out
of 50 functions, while BBPSO:jDE and BBPSO:SADE in 10
out of 50 functions. In the CLPSO case the most promising
approach is CLPSO:DEGL, since it demonstrates substantial
performance improvements in 20 out of 50 functions.

To conclude, the incorporation of the proposed framework
in any PSO variant is straightforward and, as suggested by our
extensive experimental and statistical analysis, resultsin signif-
icant performance gains in the majority of the considered cases,
with a relatively small computational overhead. Several combi-
nation with popular DE variants can be implemented, in an at-
tempt to produce an algorithm with increased performance, on
a specific class of problems. Nevertheless, before implement-
ing the proposed framework, one should pay attention on the

behavior and the main characteristics of the applied algorithms.
In the cases of PSO/DE hybridization one should consider the
discussion in Section 4.2 and Section 4.3, along with other arti-
cles that discuss the characteristics of PSO and DE algorithms,
e.g. [34, 41, 42, 50, 58, 63, 83, 91, 94, 103, 104]. In rare cases,
the hybridization of a PSO variant with a DE mutation strategy
may alter its convergence dynamics, which may lead to per-
formance deterioration, e.g. the incorporation of an explorative
DE mutation strategy in the CLPSO algorithm (refer to the last
paragraphs of Section 5.2).

5.4. Overall Performance
The objective of this work is to investigate whether given a

well performing PSO algorithm, a performance improvement
is possible through the proposed framework, without destroy-
ing its dynamics. Based on the aforementioned results, we can
safely conclude that this objective has been successfully accom-
plished by the proposed framework for the majority of the con-
sidered algorithms. In this subsection, we conclude the presen-
tation of the experimental results, by providing a summarizing
comparison of all PSO variants over all benchmark functions.
To this end, we include a statistical analysis for ranking the
performance of all algorithms on all benchmark functions. We
also visualize their behavior by firstly employing the Empiri-
cal Cumulative probability Distribution Function of the error as
an overall performance procedure and afterwards by illustrating
the convergence graphs of the median solution error values over
several functions.

Table 12 demonstrates the average rankings computed
through the Friedman, the Aligned Friedman, and the Quade
tests. For each test we present the algorithm and its score inas-
cending order, while at the bottom of the table we illustratethe
computed statistics and the correspondingp-values. Based on
the reportedp-values, all tests strongly suggests the existence
of significant differences among the considered algorithms, at
the α = 0.05 level of significance. In general, it can be ob-
served that in almost every test, the proposed hybrid variants
occupy the first positions as well as they are better than their
corresponding original PSO algorithm. In more detail, in the
Friedman test, the first six positions are acquired by the sixhy-
brid variants. Based on Friedman’s characteristics the ranking
indicates that the hybrid variants reach the first positionsfor
the majority of the considered functions. Subsequently a simi-
lar behavior can be observed for the Aligned Friedman test. In
this test, BBPSO reaches the fourth position, while the other
variants follow a similar ranking order. Finally, in the Quade
test the first place is acquired by the CLPSO:DEGL, the sec-
ond by the CLPSO algorithm and the following seven positions
by the proposed hybrid variants. This behavior indicates that
CLPSO:DEGL, FIPS:TDE/rand/1 and CLPSO algorithms per-
form better on the most difficult benchmarks of the considered
set. Based on the aforementioned tests, we can safely conclude
that CLPSO:DEGL, CLPSO:DE/rand/1 and BBPSO/DE/rand/1
can be characterized as the best performing algorithms of the
considered study.

Consequently, Figure 7 illustrates the Empirical Cumulative
probability Distribution Function (ECDF) of the solution error
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Table 12: Average Rankings of all PSO variants over all benchmark functions

Average Ranking
Friedman Aligned Friedman Quade

Rank Algorithm Score Algorithm Score Algorithm Score
1 CLPSO:DE/rand/1 5.329 CLPSO:DE/rand/1 243.590 CLPSO:DEGL 5.581
2 BBPSO:DE/rand/1 5.550 BBPSO:DE/rand/1 263.050 CLPSO 5.927
3 DMSPSO:DE/rand/1 5.889 BBPSO:JADE 290.519 FIPS:TDE/rand/1 5.982
4 FIPS:TDE/rand/1 5.979 BBPSO 299.540 DMSPSO:DE/rand/1 6.145
5 CLPSO:DEGL 6.329 DMSPSO:DE/rand/1 303.010 CLPSO:DE/rand/1 6.262
6 χPSO:DE/rand/1 6.440 CLPSO:DEGL 308.250 BBPSO:DE/rand/1 6.334
7 CLPSO 6.770 χPSO:DE/rand/1 314.879 χPSO:DE/rand/1 6.554
8 UPSO:TDE/rand/1 6.859 UPSO:TDE/rand/1 317.840 BBPSO:JADE 7.150
9 BBPSO:JADE 6.899 FIPS:TDE/rand/1 318.400 UPSO:TDE/rand/1 7.432
10 BBPSO 7.479 CLPSO 341.470 DMSPSO 7.893
11 DMSPSO 8.400 DMSPSO 374.679 BBPSO 7.961
12 χPSO 8.930 χPSO 400.329 χPSO 8.753
13 UPSO 11.339 UPSO 532.160 UPSO 10.842
14 FIPS 12.799 FIPS 599.279 FIPS 12.176

Statistic 179.7137 44.5192 10.4220
p-value 1.2529e-10 2.5164e-5 3.4296e-20
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Figure 7: Empirical cumulative probability distribution of the solution error for
the state of the art PSO variants against the corresponding hybrid frameworks
on the CEC 2005 benchmark functions.

values for the PSO variants on all considered benchmark func-
tions. As it can be clearly observed the hybrid PSO variants
exhibit a great potential on the CEC 2005 function set. Al-
most all hybrid PSO variants have higher ECDF values com-
pared with their original PSO algorithms. In general, the pro-
posed hybrids produce one to two orders of magnitude less er-
ror values than the corresponding original PSO algorithm, e.g.
the CLPSO:DE:rand/1, UPSO:TDE/rand/1, FIPS:TDE/rand/1
and BBPSO:DE/rand/1 curves reach unity at approximately
106 error, while the curves corresponding to the original
PSO algorithms (CLPSO, UPSO, FIPS and BBPSO) at error
107, 108, 108, and 107, respectively (please refer to the zoomed
subfigure inside Figure 7).

Finally, in Figure 8, we provide convergence graphs for 15
out of the 50–dimensional CEC 2005 benchmark functions, i.e.
the f1 − f6, f9 − f13, f16, f17, f21, and f23. The graphs illus-
trate median solution error value curves for all PSO variants
and their corresponding best performing hybrids considered in

this work, obtained from 100 independent simulations. As ex-
pected, the graphs capture the previously observed behavior of
the PSO algorithms, while they indicate that in most of the cases
the proposed framework either enhances the convergence of a
PSO variant or operates similarly. There are relatively fewcases
where the proposed hybrids exhibit performance deterioration.

6. Concluding Remarks

It has been recognized that during the evolutionary process
of the Particle Swarm Optimization (PSO) algorithm the so-
cial and cognitive experience of each particle, i.e. thememory-
swarm, tend to be distributed in the vicinity of the problem’s
optima. In this work, we attempt to take advantage of this char-
acteristic behavior in an attempt to improve the performance
of the algorithm. To this end, we propose a hybrid evolution-
ary framework to evolve the social and cognitive experience
of the swarm and enhance the convergence properties of the
PSO algorithm, without sacrificing its search capabilities. Here,
we propose to incorporate the Differential Evolution algorithm,
which is a simple and compact evolutionary algorithm exhibit-
ing good convergence characteristics.

In detail, after each evolution step of the PSO algorithm, we
evolve both social and cognitive experience of a swarm with the
Differential Evolution algorithm. The newly evolved positions
will be the outcome of the best experience of the swarm, which
will have the potential to either locate better regions around
problem’s minima or to rapidly exploit already found promis-
ing regions, and thus accelerate convergence. The proposed
hybridization framework is generic and scalable, as it is inde-
pendent of the main evolution stages of any Particle Swarm Op-
timization variant. In this study we have applied it to the canon-
ical PSO algorithm and five state-of-the-art PSO variants, while
we have considered six classic DE mutation strategies and four
popular DE variants.

Extensive experimental results on the CEC 2005 bench-
mark function suite validated by statistical significance anal-
ysis, demonstrate that the proposed framework is very promis-
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Figure 8: Convergence graph (median curves) for all PSO variants and their corresponding best performing hybrids on the50–dimensionalf1 − f6, f9 −
f13, f16, f17, f21, and f23 CEC 2005 benchmark functions. The horizontal axis illustrates the number of generations, and the vertical axis illustrates the median
of solution error values of 100 independent simulations.
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ing. We have firstly employed in canonical PSO six DE mu-
tation strategies separated in two groups, namely the explo-
rative and the exploitative mutation strategies. An extensive
experimental analysis clearly suggests that the explorative DE
mutation strategies exhibited significant performance gains on
the canonical PSO, over the majority of the considered bench-
mark functions. There are relatively few cases where the pro-
posed framework results in performance deterioration. On the
other hand, the performance improvement of the hybrids with
exploitative mutation strategies was less prominent. We have
observed that the more exploitative a mutation strategy is,the
more it’s performance deteriorates. All previously mentioned
observations have been validated by a statistical analysis, in-
cluding statistical significance tests and ranking procedures.

Based on the aforementioned analysis, we have further ap-
plied the three best performing DE mutation strategies to six
state-of-the-art PSO variants. Extensive experimental analy-
sis indicates that the incorporation of the proposed framework
in any PSO variant was straightforward and significantly en-
hances the performance of the majority of the considered cases.
The experimental analysis ended with the incorporation of four
popular DE algorithms on the aforementioned PSO variants.
Again, the resulting schemes demonstrated the expected be-
havior. Thus, the incorporation of the proposed framework in
a PSO variant is highly recommended. Nevertheless, before
implementing the proposed framework, one should pay atten-
tion on the behavior and the characteristics of the applied algo-
rithms. In rare cases, the hybridization of a PSO variant with
a DE mutation strategy may alter its convergence dynamics,
which may lead to performance deterioration.

The proposed framework can be easily extended in several
different ways. Thereby, in a future work we intend to incor-
porate specialized mutation strategies with different character-
istics [27] into the proposed framework, since their good explo-
rative/exploitative capabilities may result in very competitive
optimization algorithms. Furthermore, employing other opti-
mization algorithms to the proposed framework, such as Evo-
lutionary Strategies or Estimation of Distribution Algorithms,
may also result in high potential hybrid PSO variants.

The behavior and the spatial characteristics of the swarm may
result in great benefits in multimodal optimization. Thus, we in-
tend to further study the swarm’s spatial characteristics and its
impact on locating many global optima [26], either in one or
many structured swarms. Finally, we are interested in applying
the proposed framework to large-scale and real-world optimiza-
tion problems.
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