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Proximity-based Mutation Operators
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V.P. Plagianakos, and M.N. Vrahatis

Abstract—Differential Evolution is a very popular optimization
algorithm and considerable research has been devoted to the
development of efficient search operators. Motivated by the
different manner in which various search operators behave,we
propose a novel framework based on the proximity characteristics
among the individual solutions as they evolve. Our framework
incorporates information of neighboring individuals, in an at-
tempt to efficiently guide the evolution of the population towards
the global optimum, without sacrificing the search capabilities of
the algorithm. More specifically, the random selection of parents
during mutation is modified, by assigning to each individual
a probability of selection that is inversely proportional to its
distance from the mutated individual. The proposed frame-
work can be applied to any mutation strategy with minimal
changes. In this paper, we incorporate this framework in the
original Differential Evolution algorithm, as well as other recently
proposed Differential Evolution variants. Through an extensive
experimental study, we show that the proposed framework results
in enhanced performance for the majority of the benchmark
problems studied.

Index Terms—Differential Evolution, Mutation Operator,
Affinity Matrix, Nearest Neighbors

I. I NTRODUCTION

EVOLUTIONARY Algorithms (EAs) are stochastic search
methods that mimic evolutionary processes encountered

in nature. The common conceptual base of these methods is to
evolve a population of candidate solutions by simulating the
main processes involved in the evolution of genetic material of
organism populations, such as natural selection and biological
evolution. EAs can be characterized as global optimizational-
gorithms. Their population-based nature, allows them to avoid
getting trapped in a local optimum and consequently provides
a great chance to find global optimal solutions. EAs have been
successfully applied to a wide range of optimization problems,
such as image processing, pattern recognition, scheduling,
and engineering design [1], [2]. The most prominent EAs
proposed in the literature are: Genetic Algorithms [1], Evo-
lutionary Programming [3], Evolution Strategies [4], Genetic
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Programming [5], Particle Swarm Optimization (PSO) [6], and
Differential Evolution [7], [8].

In general, every EA starts by initializing a population of
candidate solutions (individuals). The quality of each solution
is evaluated using a fitness function, which represents the prob-
lem at hand. A selection process is applied at each iteration
of the EA to produce a new set of solutions (population).
The selection process is biased toward the most promising
traits of the current population of solutions to increase their
chances of being included in the new population. At each
iteration (generation), the individuals are evolved through a
predefined set of operators, likemutationand recombination.
This procedure is repeated until convergence is reached. The
best solution found by this procedure is expected to be a near-
optimum solution [2], [9].

Mutation and recombinationare the two most frequently
used operators and are referred to asevolutionaryoperators.
The role of mutation is to modify an individual by small
random changes to generate a new individual [2], [9]. Its main
objective is to increase diversity by introducing new genetic
material into the population, and thus avoid local optima. The
recombination(or crossover) operator combines two, or more,
individuals to generate new promising candidate solutions[2],
[9]. The main objective of the recombination operator is to
explore new areas of the search space [2], [10].

In this paper, we study the Differential Evolution (DE)
algorithm, proposed by Storn and Price [7], [8]. This method
has been successfully applied in a plethora of optimization
problems [7], [11]–[19]. Without loss of generality, we only
consider minimization problems. In this case, the objective
is to locate a global minimizer of a functionf (objective
function).

Definition 1: A global minimizerx⋆ ∈ R
D of the real–

valued functionf : E → R is defined as:

f(x⋆) 6 f(x), ∀x ∈ E ,

where the compact setE ⊆ R
D is a D–dimensional scaled

translation of the unit hypercube.
A main issue in the application of EAs to a given opti-

mization problem, is to determine the values of the control
parameters of the algorithm that will allow the efficient explo-
ration of the search space, as well as its effective exploitation.
Exploration enables the identification of regions of the search
space in which good solutions are located. On the other
hand, exploitation accelerates the convergence to the optimum
solution. Inappropriate choice of the parameter values can
cause the algorithm to become greedy or very explorative and
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consequently the search of the optimum can be hindered. For
example, a high mutation rate will result in much of the space
being explored, but there is also a high probability of losing
promising solutions; the algorithm has difficulty to converge
to an optimum due to insufficient exploitation. Several Evolu-
tionary Computation approaches have been proposed that try
to give a satisfactory answer to thisexploration/exploitation
dilemma [20]–[27]. Recent studies of the exploration and
exploitation capabilities of different mutation operators have
shown that after a number of iterations of the DE algorithm the
individuals exhibit the tendency to gather around optimizers
of the objective function [21], [22].

Motivated by these findings, we propose an alternative to
the uniform random selection of parents during mutation.
We advocate a stochastic selection framework in which the
probability of selecting an individual to become a parent
is inversely proportional to its distance from the individual
undergoing mutation. By favoring search in the vicinity of
the mutated individual this framework promotes efficient ex-
ploitation, without substantially diminishing the exploration
capabilities of the mutation operator. The proposed framework
can be applied to any mutation strategy and, as shown through
extensive experimental evaluation, produces remarkable im-
provement. We also incorporate this framework to a number
of recently proposed DE variants and observe performance
gains.

The rest of the paper is organized as follows: Section II
describes the original Differential Evolution algorithm.In
Section III, we include a short literature review. Section IV
illustrates the behavior of different mutation operators,pro-
viding the motivation for the proposed framework, which is
presented in Section V. Next, in Section VI we present the
results of an extensive experimental analysis, and the paper
concludes with a discussion in Section VII.

II. T HE DIFFERENTIAL EVOLUTION ALGORITHM

Differential Evolution [7], [8] is a population–based stochas-
tic parallel direct search method that utilizes concepts bor-
rowed from the broad class of EAs. The method typically
requires few control parameters and numerous studies have
shown that it has good convergence properties. DE outper-
forms other well known EAs in a plethora of problems [7],
[11]–[13], [15] and has attracted the interest of the research
community. Consequently, several variations of the classical
DE algorithm have been proposed in the literature [13], [14],
[22], [23], [26]–[34]. A detailed description of the DE algo-
rithm and experimental results on hard optimization problems
can be found in [12]–[15], [18].

The DE algorithmic schemes can be classified using the
notation DE/base/num/cross. The method of selecting the
parent that constitutes the base individual is indicated bybase.
For example, DE/rand/num/crossselects the parent for the base
individual randomly, while in DE/best/num/crossthe parent for
the base individual is the best individual of the population. The
number of differences between individuals that are used to
perturb the base individual is indicated bynum. Finally, cross
stands for the crossover type utilized by the mutation strategy,

i.e. exp for exponential andbin for binomial. Exponential and
binomial crossover will be discussed in subsection II-C. In
this study, we always employ binomial crossover, and thus we
exclude thecrosspart to simplify the notation.

In DE the central search operator is known asmutation
strategy. Consequently, a substantial amount of research has
been devoted to the development and the analysis of efficient
mutation operators and their dynamics [12], [13], [15], [18],
[35], [36]. In more detail, for each individual undergoing
mutation (mutated individual) a set of individual solutions
are uniformly selected across the population (parents). The
parents and the mutated individual are subsequently mixed to
construct a new candidate solution (mutant individual). The
mutation operators prescribe the manner in which this mixing
is performed, and the number of parents that will be used.
The search operators efficiently shuffle information among the
individuals, enabling the search for an optimum to focus on
the most promising regions of the solution space. Next, we
describe in detail the DE procedures.

A. Initialization

Following the general concept of EAs, the first step
of DE is the initialization of a population ofNP , D–
dimensional potential solutions (individuals) over the opti-
mization search space. We shall symbolize each individual
by xi

g = [xi
g,1, x

i
g,2, . . . , x

i
g,D], for i = 1, 2, . . . , NP, where

g = 0, 1, . . . , gmax is the current generation andgmax the max-
imum number of generations. At the first generation (g = 0)
the population should be sufficiently scaled to cover as much
as possible of the optimization search space. Initialization
is implemented by using a random number distribution to
generate the potential individuals in the optimization search
space. The optimization search space can be defined by lower
and upper bound values, i.e.L = [L1, L2, . . . , LD] and
U = [U1, U2, . . . , UD]. Hence, we can initialize thej-th
dimension of thei-th individual according to:

xi
0,j = Lj + randj(0, 1) · (Uj − Lj), (1)

whererandj(0, 1) is a uniformly distributed random number
confined in the[0, 1] range.

B. Mutation Operators

Following initialization, the evolution process begins with
the application of the mutation operator. For each individual
of the current population a new individual, called themutant
individual vig, is derived through the combination of randomly
selected and pre-specified individuals. The originally proposed
and most frequently used mutation strategies in the literature
are:

1) “DE/best/1”

vig = xbest
g + F (xr1

g − xr2
g ), (2)

2) “DE/rand/1”

vig = xr1
g + F (xr2

g − xr3
g ), (3)
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3) “DE/current-to-best/1”

vig = xi
g + F (xbest

g − xi
g) + F (xr1

g − xr2
g ), (4)

4) “DE/best/2”

vig = xbest
g + F (xr1

g − xr2
g ) + F (xr3

g − xr4
g ), (5)

5) “DE/rand/2”

vig = xr1
g + F (xr2

g − xr3
g ) + F (xr4

g − xr5
g ), (6)

6) “DE/current-to-best/2”

vig = xi
g + F (xbest

g − xi
g) +

+ F (xr1
g − xr2

g ) + F (xr3
g − xr4

g ), (7)

where xbest
g denotes the best (fittest) individual of the

current generation, the indicesr1, r2, r3, r4, r5 ∈ Sr =
{1, 2, . . . , NP} \ {i}, are uniformly random integers mutually
different and distinct from the running indexi, (xrx

g −x
ry
g ) is

a difference vector that mutates the base vector, (rx, ry ∈ Sr),
andF > 0 is a real positive parameter, calledmutationor scal-
ing factor. The mutation factor controls the amplification of the
difference between two individuals and is used to prevent the
stagnation of the search process. Large values of this parameter
amplify the differences and hence promote exploration, while
small values favor exploitation. The inappropriate choiceof
the mutation factor can therefore cause the deceleration ofthe
algorithm and a reduction of population diversity [12], [15],
[28]. In the original DE algorithm, the mutation factorF is a
fixed and user defined parameter, while in many adaptive DE
variants each individual is associated with a different adaptive
mutation factor [23], [26]–[31], [33], [37], [38]. SeveralDE
variants that either introduce new mutation strategies or new
self-adaptive techniques to tune the control parameters have
been recently proposed [12], [15], [18], [22], [25]–[27], [31],
[34], [35], [39]–[44]. A detailed discussion about the current
state-of-the-art of DE can be found in a recently published
survey [13].

In an attempt to rationalize the mutation strategies, Eqs. (2)–
(7), we observe that Eq. (3) is similar to the crossover operator
employed by some Genetic Algorithms. Eq. (2) is derived
from Eq. (3), by substituting the best member of the previous
generation,xbest

g , with a random individualxr1
g . Eqs. (4), (5),

(6) and (7) are modifications obtained by the combination of
Eqs. (2) and (3). It is clear that new DE mutation operators can
be generated using the above ones as building blocks. Such
examples include the trigonometric mutation operator [39],
the recently proposed genetically programmed mutation op-
erators [45], or new classes of mutation operators that attempt
to combine the explorative and exploitative capabilities of the
original ones [21], [22].

C. Crossover or Recombination Operators

Following mutation, thecrossoveror recombinationopera-
tor is applied to further increase the diversity of the population.
It is important to note that without the crossover operator,
the original DE algorithm performs poorly on multimodal
functions [12]. In crossover, the mutant individuals are com-
bined with other predetermined members of the population,

called target individuals, to produce thetrial individuals. The
most well known and widely used variants of DE utilize two
main crossover schemes; theexponentialand thebinomial
or uniform crossover [7], [12], [13], [46]. The exponential
crossover scheme was introduced in the original work of Storn
and Price [8], but in the subsequent DE literature the binomial
variant [7], [13] is mostly used.

The binomial or uniform crossover is performed on each
componentj (j = 1, 2, . . . , D) of the mutant individualvig.
In detail, for each component of the mutant vector a random
real numberr in the interval [0, 1] is drawn and compared
with the crossover rateor recombination factor, CR ∈ [0, 1],
which is the second DE control parameter. Ifr 6 CR, then
we select, as thej–th component of the trial individualui

g,
the j–th component of the mutant individualvig. Otherwise,
the j–th component of the target vectorxi

g becomes thej–th
component of the trial vector. The aforementioned procedure
can be outlined as:

ui
g,j =

{

vig,j , if (randi,j(0, 1) 6 CR or j = jrand),

xi
g,j , otherwise,

(8)

where the randi,j(0, 1) is a uniformly distributed random
number in[0, 1], different for everyj-th component of every
individual, andjrand ∈ {1, 2, . . . , D} is a randomly chosen
integer which ensures that at least one component of the
mutant vector will be assigned to the target vector. It is evident
that for values of the recombination factor close to zero the
effect of the mutation operator is very small, since the target
and the mutant vector become identical.

D. Selection

Finally, the selection operator is employed to maintain
the most promising trial individuals in the next generation
and to retain the population size constant over the evolution
process [12]. The original DE adopts a simple monotone
selection scheme. It compares the objective values of the target
xi
g and trialui

g individuals. If the trial individual reduces the
value of the objective function then it is accepted for the next
generation; otherwise the target individual is retained inthe
population. Thus, theselectionoperator can be defined as:

xi
g+1 =

{

ui
g, if f(ui

g) < f(xi
g),

xi
g, otherwise.

(9)

The original DE algorithm (DE/rand/1/bin) is illustrated in
Algorithm 1.

III. R ELATED WORK

Darwin was the first to realize that populations may exhibit
a spatial structure which can influence the population’s dynam-
ics. The Evolutionary Computing (EC) literature today utilizes
spatial information in populations and the general conceptof
a neighborhood in several domains. In this section, we briefly
discuss how the neighborhood concept has been utilized in the
context of the Differential Evolution algorithm.
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Algorithm 1 Algorithmic scheme for the original Differential
Evolution algorithm (DE/rand/1/bin)

Set the generation counterg = 0
/* Initialize the population of NP individuals: Pg =
{x1

g, x
2
g, . . . , x

NP
g }, with xi

g = {xi
1,g, x

i
2,g, . . . , x

i
D,g} for

i = 1, 2, . . . , NP uniformly in the optimization search
hyper-rectangle[L,U ].*/
for i = 1 to NP do

for j = 1 to D do
xi
0,j = Lj + randj(0, 1) · (Uj − Lj)

end for
Evaluate individualxi

0

end for
while termination criteria are not satisfieddo

Set the generation counterg = g + 1
for i = 1 to NP do

/* Mutation step */
Select uniformly random integersr1, r2, r3 ∈ Sr =
{1, 2, . . . , NP} \ {i}
/* For each target vectorxi

g generate the corresponding
mutant vectorvig using Eq. (3) */
for j = 1 to D do
vij,g = xr1

j,g + F (xr2
j,g − xr3

j,g)
end for
/* Crossover step:For each target vectorxi

g generate
the corresponding trial vectorui

g through theBinomial
Crossoverscheme.*/
jrand = a uniformly distributed random integer∈
{1, 2, . . . , D}
for j = 1 to D do

ui
g,j =

{

vig,j , if (randi,j(0, 1) 6 CR or j = jrand),
xi
g,j , otherwise,

end for
/* Selection step*/
if f(ui

g) < f(xi
g) then

xi
g+1 = ui

g

if f(ui
g) < f(xbest

g ) then
xbest
g = ui

g andf(xbest
g ) = f(ui

g)
end if

else
xi
g+1 = xi

g

end if
end for

end while

A. Neighborhood concepts in structured EAs

In structured EAs the population is decentralized into sub-
populations which can interact and may have different evolu-
tionary roles. Two of the most prominent structured EAs are
cellular Evolutionary Algorithms (cEAs) [47] and distributed
Evolutionary Algorithms (dEAs) [48], [49]. A comprehensive
classification and presentation can be found in [50], [51].
Generally, in cEAs, the sub-populations are created according
to a neighborhood criterion and thus each sub-population has
both an explorative and an exploitative role for a different
region of the search space. On the other hand, in dEAs,

distinct sub-populations (islands) explore in parallel the entire
search space. In biological terms, dEAs resemble distinct semi-
isolated populations in which evolution takes place indepen-
dently. The migration operator in dEAs controls the exchange
of individuals between subpopulations. This operator defines
the topology, the migration rate, the migration frequency,and
the migration policy [49], [52], [53]. These additional degrees
of freedom make dEAs more flexible and capable of tackling
harder optimization tasks.

The concept of structured populations has been incorporated
in DE. In [23] and [54], distributed DE variants were presented
which control adaptively the migration and the DE control pa-
rameters according to a genotype diversity criterion. In [55], a
distributed DE algorithm is proposed that preserves diversity in
the niches in order to solve multimodal optimization problems.
In [56] a ring topology distributed DE was proposed with a
migration operator that exchanges best performing individuals
and replaces random individuals among neighboring sub-
populations. In [57], Apolloni et al. proposed a modified
version of [56], in which migration is performed through a
probabilistic criterion. Modifications of [56] presented in [58]–
[60] utilize a locally connected topology, where each node is
connected tol other nodes. The recently proposed Distributed
Differential Evolution with Explorative—Exploitative Popu-
lation Families (DDE-EEPF) [24] employs sub-populations
which are grouped into two families: explorative and ex-
ploitative. Explorative subpopulations have constant size, are
arranged according to a ring topology and employ a migration
of best performing individuals. On the other hand, exploitative
subpopulations have dynamic size, are highly exploitative,
and aim to quickly detect fittest solutions. Numerical results
show that DDE-EEPF is an efficient and promising distributed
DE variant. The Distributed Differential Evolution with Scale
factor inheritance mechanism (FACPDE) [61] implements sub-
populations arranged in a ring topology. Each sub-population
is characterized by its own scale factor and migrates the best
individual with its associated scale factor to its neighbors.
The distribution of the successful scale factors and the fittest
individuals among the subpopulations, enhances the scheme,
and its performance substantially.

B. Index neighborhood concepts in Differential Evolution

A popular neighborhood structure in EC is the index-
based neighborhood concept, introduced in the PSO algorithm.
PSO incorporates an index-based neighborhood structure in
its population and not real topological-based neighborhoods.
Thus, the neighbors of each potential solution do not necessary
lie in the vicinity of its topological region in the search
space. Recently, the index neighborhood structures of PSO
have also been considered in DE. The Differential Evolution
with Global and Local Neighborhoods (DEGL) [13], [25], [42]
incorporates concepts of the UPSO algorithm [62], such as the
index neighborhoods of each individual, a local and a global
scheme to facilitate the exploration and the exploitation of
the search space, and a convex combination of these schemes
to balance their effect. The Self-adaptive DE (SDE) [63],
has been modified by using a ring neighborhood topology
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in [64]. The same authors introduced the Barebones Differ-
ential Evolution [65] (BBDE). BBDE employs the concept of
index neighborhoods in DE and enhances the DE mutation
scheme by utilizing as a base vector either a randomly chosen
personal best position or a stochastic weighted average of the
individual’s attractors (e.g. its personal and neighborhood best
positions). This mutation scheme tends to explore the search
space around the corresponding base vector and thus to exploit
the vicinity of the current position.

C. Neighborhood concepts in mutation strategies

Numerous DE variants utilize specialized mutation strate-
gies to exploit population structure. In [66], five mutation
strategies have been proposed that produce new vectors in
the vicinity of the corresponding base vector. To this end,
the weighted difference between two individuals is used in
conjunction with an adaptive scaling factor. DE with Parent
Centric Crossover (DEPCX) and DE with Probabilistic Parent
Centric Crossover (Pro. DEPCX) [67] are inspired by the
parent centric crossover operator (PCX) used in GAs [68].
DEPCX utilizes the parent centric approach in the muta-
tion strategy to generate new solution vectors, while Pro.
DEPCX stochastically utilizes the parent centric mutation
operator along with the basic DE mutation operation. The
PCX procedure increases the probability of producing new
candidate solution vectors in the vicinity of the parent vectors
and thus exploits the neighborhood of parent vectors. In [44]
and [69], two modified DE variants called DE with Random
Localization (DERL) and DE with Localization using the
best vector (DELB) were proposed. Both variants incorporate
simple techniques to produce solutions that exhibit a local
search effect around the base vector, with global exploration
characteristics at the early stages of the algorithm and a local
effect in terms of convergence at later stages of the algorithm.

D. Neighborhood concepts through local search

Various DE variants attempt to exploit and refine the po-
sition of the best individuals, by incorporating a list of local
search procedures. MDE [70] makes use of the Hooke-Jeeves
algorithm and a Stochastic Local Searcher adaptively coordi-
nated by a fitness diversity-based measure. The EMDE [16],
[17] combines the powerful explorative features of DE with the
exploitative features of three local search algorithms employ-
ing different pivot rules and neighborhood generating func-
tions, e.g. Hooke Jeeves Algorithm, a Stochastic Local Search,
and Simulated Annealing. The Super-Fit Memetic Differential
Evolution (SFMDE) [71] employs PSO, the Nelder-Mead
algorithm and the Rosenbrock algorithm. SFMDE coordinates
the local search algorithms by means of an index that measures
the quality of the super-fit individual with respect to the
remaining individuals in the population and a probabilistic
scheme based on the generalized beta distribution. Noman
and Iba [72] recently proposed a Fittest Individual Refinement
(FIR), a crossover-based local search DE variant to tackle high
dimensional problems. In [73], FIR is enhanced through a
local search technique which adaptively adjusts the lengthof
the search, utilizing a hill-climbing heuristic. This approach

accelerates DE by enhancing the search capability in the
neighborhood of the best solution in successive generations.
Additionally, the Scale Factor Local Search Differential Evo-
lution (SFLSDE) [74] is based on the DE/rand/1 mutation
strategy and incorporates, within a self-adaptive scheme,two
local search algorithms to efficiently adapt the mutation factor
during the evolution. The local searchers aim to detect a value
of the scale factor that corresponds to a refined offspring and
thus tend to correct “weak” individuals.

IV. T HE DYNAMICS OF DE MUTATION STRATEGIES

In this section, we investigate the impact of DE dynamics,
i.e. the exploration/exploitation capabilities of the different
DE mutation strategies. Our findings suggest that the indi-
viduals evolved through some of the original DE mutation
strategies sometimes tend to gather around minimizers of the
objective function. This motivates our approach, which aims to
appropriately select neighboring individuals for incorporation
in each mutation strategy. The goal is to efficiently guide the
evolution of the population towards a global optimum, without
sacrificing the search capabilities of the DE algorithm.

The exploration and exploitation capabilities of different
DE mutation strategies were studied in [21], [22], where it
was shown that not all DE search operators have the same
impact on the exploration/exploitation of the search space.
Thus, the choice of the most efficient mutation operator can
be cumbersome and problem dependent.

In general, we can distinguish between mutation oper-
ators that promote exploration and operators that promote
exploitation. An observation of the equations of the mutation
operators (Eqs. (2)–(7)), reveals that operators that incorporate
the best individual (e.g. DE/best/1, DE/best/2, and DE/current-
to-best/1) favor exploitation, since the mutant individuals are
strongly attracted around the current best individual. Note that
DE/best/2 usually exhibits better exploration than DE/best/1,
because it includes one more difference of randomly selected
individuals, which adds one more component of random
variation in each mutation. In contrast, mutation operators that
incorporate either randomly chosen individuals or many dif-
ferences of randomly chosen individuals (e.g. DE/rand/1 and
DE/rand/2) enhance the exploration of the search space, since
a high degree of random variability affects each mutation.
Again, although DE/current-to-best/2 is based on DE/current-
to-best/1 the utilization of a second difference vector further
promotes the exploration of the search space [12], [13], [15].

Next, we investigate the impact of the dynamics of different
DE mutation strategies on the population. Experimental sim-
ulations indicate that DE mutation strategies tend to distribute
the individuals of the population in the vicinity of the objective
function’s minima. Exploitative strategies rapidly gather all the
individuals to the basin of attraction of a single minimum,
whereas explorative strategies tend to spread the individuals
around many minima.

To demonstrate this we employ as a case study the two-
dimensional Shekel’s Foxholes benchmark function, illustrated
in Fig. 1. This function has twenty four distinct local minima
and one global minimumf(−32, 32) = 0.998004, in the range
[−65.536, 65.536]2 [75].
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Fig. 1. 3–D Plot of the Shekel’s Foxholes function

We utilize two DE variants with different dynamics; the
explorative DE/rand/1 and the exploitative DE/best/1. Contour
plots of the Shekel’s Foxholes function and the positions of
a population of 100 individuals after 1, 5, 10, 20 generations
of DE/best/1 and DE/rand/1 are depicted in Figs. 2 and 3,
respectively. The two figures show that both DE/best/1 and
DE/rand/1 first explore the search space around their initial
population positions. The exploitative character of DE/best/1
causes the individuals to gather rapidly around the basin of
attraction of the global minimum, (see Fig. 2). On the other
hand, DE/rand/1, Fig. 3, spreads the individuals over many
minima locations, before gathering them around the global
minimum.

To study theclustering tendencyof different DE mutation
strategies we utilize a statistical test called the Hopkins
test [76]. Clustering tendency is a well known concept in
the cluster analysis literature that deals with the problemof
determining the presence or absence of a clustering struc-
ture in a data set [77]. The Hopkins test relies on the
distances between a number of vectors which are randomly
placed in the search space, and the vectors of a data set,
X = {xi, i = 1, 2, . . . , NP}, which in our case correspond
to the individuals of the population. More specifically, let
Y = {yi, i = 1, 2, . . . ,M},M ≪ NP , with typically
M = NP/10, be a set of vectors that are uniformly distributed
in the search space. In addition, letX1 ⊂ X be a set ofM
randomly chosen vectors fromX . Let dj be the distance of
yj ∈ Y to its closest vector inX1, denoted byxj , andδj be
the distance betweenxj and its nearest neighbor inX1 \{xj}.
The Hopkins statistic involves thel-th powers ofdj andδj and
is defined as [77]:

h =

∑M
j=1

dlj
∑M

j=1
dlj +

∑M
j=1

δlj
.

This statistic compares the nearest neighbor distributionof the
points inX1 with that from the points inY . When the dataset
X contains clusters, the distances between nearest neighbors
in X1 are expected to be small on average, andh assumes
relatively large values. Therefore, large values ofh indicate the
presence of a clustering structure in the dataset, while small

Fig. 2. DE/best/1/bin population after 1, 5, 10, and 20 generations

Fig. 3. DE/rand/1/bin population after 1, 5, 10, and 20 generations

values ofh indicate the presence of regularly spaced points.
A value around0.5 indicates that the vectors of the datasetX
are randomly distributed over the search space.

Due to the stochastic nature of H-measure, for every gen-
eration in every simulation we calculate the H-measure value
100 times, by considering different random solutions. Thus, in
Fig. 4, we illustrate the mean value of the H-measure at each
generation, obtained from 100 independent simulations forthe
30-dimensional versions of the Shifted Sphere and Shifted
Griewank functions [78]. Error bars around the mean depict
the standard deviation of the H-measure. The Shifted Sphere
is a simple unimodal function, while the Shifted Griewank
is highly multimodal. These benchmarks were chosen to
investigate the behavior of the DE mutation operators in two
qualitatively different problems.

As shown, all mutation strategies exhibit large H-measure
values within the first 100 generations, indicative of a strong
clustering structure, even from these initial stages of the
evolution. Also, the relative values of the H-measure for the
different strategies indicate an ordering with respect to their
exploitation tendency. DE/best/1 appears to be the most ex-
ploitative operator, and DE/current-to-best/1 behaves similarly.
The least exploitative operator is DE/rand/2.
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Fig. 4. H-measure of six classic DE mutation strategies on the Shifted Sphere
and on the Shifted Griewank

In this work, we attempt to take advantage of this clustering
behavior. To this end, we modify the way that DE mutation
strategies choose individuals to form the difference vectors,
which are employed to mutate the base vector. More specifi-
cally, to generate a mutant individual, we propose to use indi-
viduals in the vicinity of the parent vector that probably reside
in the same cluster, instead of uniformly random individuals.
This has the potential to rapidly exploit the regions of minima,
and thus accelerate convergence.

To illustrate this concept, Figs. 5 and 6 show the 5-nearest
neighbors graphs for the DE/best/1 and DE/rand/1 populations
of the two-dimensional Shekel’s Foxholes function, after 1,
5, 10, and 20 generations, respectively. As shown, selecting
individuals amongst the 5-nearest neighbors to produce mutant
individuals will achieve our goal of exploiting local informa-
tion. The occasional connections between individuals clustered
around different local minima, suggest that the exploration
abilities of the algorithm will not be severely hindered. We
further promote exploration by introducing stochasticityinto
the selection mechanism, instead of just using a prespeci-
fied number of nearest neighbors. In particular, we assign a
probability of selection to each individual which is inversely
proportional to its distance to the parent individual. In the next

Fig. 5. The5-Nearest Neighbors graph for the DE/best/1/bin populationafter
1, 5, 10 and 20 generations

Fig. 6. The5-Nearest Neighbors graph for the DE/rand/1/bin population
after 1, 5, 10 and 20 generations

section, we describe in detail the proposed method.

V. THE PROPOSEDPROXIMITY-BASED MUTATION

FRAMEWORK

As shown in the previous section, it is possible to guide the
evolution towards a global optimum without compromising the
algorithm’s search capabilities by incorporating information
from neighboring individuals. In this section, we discuss the
main concepts behind a Proximity-based Differential Evolu-
tion framework (Pro DE). The easiest way to implement the
proposed approach would be to select the indicesr1, r2, r3
of the individuals involved in mutation, to correspond to
the 3-nearest neighbors of the parent individual, rather than
being random. However, such an approach could result in an
exceedingly exploitative (greedy) algorithm, especiallyduring
the first steps of the evolution where such a behavior can
be detrimental. Instead, we propose a stochastic selectionof
ri, i ∈ {1, 2, 3} in the mutation procedure.

Let us consider a population ofNP , D-dimensional individ-
ualsPg = [x1

g, x
2
g, . . . , x

NP
g ]. We calculate the affinity matrix,

Rd, based on real distances between individuals. Thus, the
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Algorithm 2 Pro DE/rand/1: proximity-based mutation algo-
rithmic scheme for DE/rand/1

/* Mutation step */
Calculate the probability matrixRp based on Eq. (10)
Utilize a roulette wheel to select indicesr∗1 , r

∗

2 , r
∗

3 ∈ Sr =
{1, 2, . . . , NP} \ {i} based on probability matrixRp

/* For each target vectorxi
g generate the corresponding

mutant vectorvig using Eq. (3) */
for j = 1 to D do
vij,g = x

r∗
1

j,g + F (x
r∗
2

j,g − x
r∗
3

j,g)
end for

Rd(i, j) element of the matrix corresponds to the distance
between thei-th and thej-th individuals:

Rd =



















0 ‖x1
g, x

2
g‖ · · · ‖x1

g, x
NP
g ‖

‖x2
g, x

1
g‖ 0 · · · ‖x2

g, x
NP
g ‖

‖x3
g, x

1
g‖ ‖x3

g, x
2
g‖ 0 ‖x3

g, x
NP
g ‖

...
...

. . .
...

‖xNP
g , x1

g‖ ‖xNP
g , x2

g‖ · · · 0



















,

where ‖x, y‖ is a distance measure between thex and y
individuals. In the case of decision variables with different
search ranges, a scale-invariant distance measure (e.g. the
Mahalanobis distance [77]) needs to be used to avoid any
dependence on the scale of the variables. It has been shown
that a fixed number of points becomes increasingly “sparse”
as the dimensionality increases [79]. Therefore, in very high
dimensional problemsp-norms, withp 6 1 can be used [80].
In this paper we use Euclidean distances, since in all the
considered problems all the variables have equal ranges.

The affinity matrix is symmetric, due to the symmetric
property of the distance. Thus, only the upper triangular part
of Rd needs to be calculated. Based on theRd matrix, we
calculate a probability matrixRp, in which each element
Rp(i, j) represents a probability between thei-th and j-th
individual with respect to thei-th row. The probability of the
i-th individual is inversely proportional to the distance ofthe
j-th individual, i.e. the individual of the row with the minimum
distance has the maximum probability:

Rp(i, j) = 1−
Rd(i, j)

∑

i Rd(i, j)
, (10)

where i, j = 1, 2, . . . , NP . Thus, we incorporate a stochas-
tic selection procedure, in the form of a simple roulette
wheel selection without replacement [2], to obtain the indices
r∗1 , r

∗

2 , r
∗

3 ∈ Sr = {1, 2, . . . , NP} \ {i}.
A notable observation is that it is not necessary to repeatedly

calculate the probability matrix in every generation. As itis
previously described, the key role of the proximity framework
is to exploit possible clustering structure of the population
over the problem’s minima and subsequently incorporate that
information in the evolution phase of the algorithm. To this
end, whenever an individual passes the selection operator its
position is altered and the affinity matrix should be updated.
Depending either on the computational cost we are willing

to pay, or on the characteristics of the DE variant and
the considered problem, theRp matrix can be calculated
in every or every few generations. It is evident that when
the affinity matrix is not calculated in every generation, it
contains errors. Inaccurate information in the affinity matrix
may not significantly affect the algorithm’s dynamics, due
to the desired randomness of indicesri. In this paper, we
propose to update the affinity matrix after each change of an
individual’s position, which is in essence at every generation.

Some DE variants incorporate operators that rapidly change
the position of many individuals either by the greediness of
the evolution operator, e.g. the mutation strategies DE/best/1
DE/current-to-best/1, DE/best/2, or due to an extra operator
that influences the evolution dynamics, e.g. the populationof
opposition-based DE [40], [41]. In these cases, we must imme-
diately transfer this information to the proximity framework,
and thus update the affinity matrix in every generation.

The proposed proximity-based framework affects only the
mutation step, hence it could be directly applied to any
DE mutation strategy. The application of this framework for
DE/rand/1 is demonstrated in Algorithm 2. We use the notation
Pro DE/rand/1 to designate that the proposed proximity-based
framework is used.

VI. EXPERIMENTAL RESULTS

In this section, we perform an extensive experimental eval-
uation of the proposed framework. We employ the CEC 2005
benchmark suite which consists of 25 scalable benchmark
functions [78]. Based on their characteristics, the functions of
the CEC 2005 benchmark set can be divided into the following
four classes. Functionscf1 − cf5 are unimodal;cf6 − cf12
are basic multimodal functions;cf13 and cf14 are expanded
multimodal functions, andcf15−cf25 are hybrid compositions
of functions with a huge number of local minima. A thorough
description of this test set is provided in [78].

To perform a comprehensive evaluation and highlight the
different aspects of the proposed framework, we divide the
presentation of the experimental results into four subsections.
We first incorporate the proposed proximity framework into
the original DE mutation strategies and compare the per-
formance of each strategy with its “Pro DE” variant (Sub-
section VI-A). Subsequently, we discuss the suitability of
the proximity framework for other well-known DE variants
(Subsection VI-B). In Subsection VI-C the computational cost
of the proposed framework is discussed. Finally, an overall
performance comparison among all the considered approaches
is provided in Subsection VI-D.

A. The Proximity-based Framework in DE

In this section we incorporate the proposed proximity-
based framework in each of the six original DE mutation
strategies. To maintain a reliable and fair comparison we
employ parameter settings that are extensively used in the
literature. In more detail, the parameter settings used are:

(a) Population size,NP = 100 [15], [31], [75].
(b) Mutation factorF = 0.5 [7], [15], [29], [31].
(c) Recombination factorCR = 0.9 [7], [15], [29], [31].
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TABLE I
ERROR VALUES OF THE ORIGINALDE MUTATION STRATEGIES AND THEIR CORRESPONDING PROXIMITY-BASED VARIANTS OVER THE30–DIMENSIONAL

CEC 2005BENCHMARK SET

DE/best/1 Pro DE/best/1 DE/rand/1 Pro DE/rand/1 DE/current-to-best/1 Pro DE/current-to-best/1
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 = 1.537e+022.477e+02 3.054e+02 2.926e+02 -
cf2 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 = 1.973e+031.338e+03 2.137e+03 1.163e+03 =
cf3 2.756e+04 1.713e+04 1.493e+041.042e+04 + 5.077e+05 3.724e+05 4.096e+052.338e+05 = 2.689e+062.711e+06 3.130e+06 2.395e+06 =
cf4 2.159e+023.773e+02 3.092e+02 6.702e+02 = 2.410e-02 2.700e-02 1.700e-033.406e-03 + 3.669e+023.578e+02 4.871e+02 4.515e+02 =
cf5 1.555e+031.081e+03 2.184e+03 7.268e+02 - 1.470e-023.191e-02 1.183e+02 1.372e+02 - 4.603e+039.657e+02 5.766e+03 1.365e+03 -
cf6 1.595e+00 1.973e+00 1.435e+001.933e+00 = 2.255e+001.406e+00 3.625e+00 2.985e+00 - 9.147e+061.154e+07 2.884e+07 6.154e+07 -
cf7 4.764e+03 1.943e+02 4.696e+031.837e-12 + 4.696e+037.709e-03 4.696e+03 1.837e-12 - 5.001e+032.009e+02 5.242e+03 1.685e+02 -
cf8 2.095e+016.008e-02 2.101e+01 6.060e-02 - 2.094e+01 4.480e-02 2.094e+01 5.320e-02 = 2.094e+01 5.006e-02 2.093e+016.071e-02 =
cf9 1.058e+02 2.711e+01 9.199e+012.454e+01 + 1.325e+02 2.453e+01 1.641e+015.282e+00 + 6.895e+011.639e+01 8.097e+01 1.884e+01 -
cf10 1.306e+024.933e+01 1.379e+02 3.634e+01 = 1.822e+02 7.871e+00 3.298e+011.293e+01 + 8.895e+012.839e+01 1.001e+02 2.865e+01 -
cf11 2.188e+014.143e+00 2.295e+01 4.283e+00 = 3.903e+01 1.224e+00 1.180e+014.040e+00 + 1.447e+012.950e+00 1.753e+01 3.331e+00 -
cf12 5.717e+04 5.796e+04 1.250e+031.787e+03 + 2.553e+04 2.188e+04 2.366e+032.147e+03 + 6.172e+04 4.360e+04 2.441e+041.407e+04 +
cf13 9.802e+003.429e+00 1.079e+01 3.937e+00 = 1.542e+01 8.584e-01 2.813e+006.075e-01 + 5.306e+00 3.302e+00 5.056e+002.991e+00 =
cf14 1.217e+016.716e-01 1.250e+01 6.501e-01 - 1.356e+01 1.382e-01 1.315e+012.160e-01 + 1.194e+01 3.418e-01 1.172e+013.394e-01 +
cf15 5.226e+02 8.110e+01 4.493e+029.302e+01 + 2.520e+028.862e+01 3.960e+02 5.330e+01 - 4.339e+028.339e+01 4.594e+02 1.039e+02 =
cf16 2.825e+02 1.383e+02 2.476e+021.195e+02 = 2.187e+02 3.637e+01 5.613e+015.055e+01 + 2.228e+021.639e+02 2.333e+02 1.672e+02 =
cf17 3.199e+02 1.488e+02 2.614e+021.284e+02 = 2.461e+02 5.148e+01 8.541e+015.296e+01 + 2.346e+02 1.639e+02 2.062e+021.429e+02 =
cf18 9.292e+023.065e+01 9.477e+02 3.631e+01 - 9.034e+02 4.932e-01 8.824e+024.422e+01 + 9.504e+022.106e+01 9.609e+02 3.898e+01 -
cf19 9.235e+021.746e+01 9.394e+02 4.490e+01 - 9.033e+02 2.236e-01 8.975e+022.907e+01 + 9.518e+022.114e+01 9.661e+02 3.295e+01 -
cf20 9.305e+023.041e+01 9.510e+02 3.363e+01 - 9.033e+02 2.022e-01 8.952e+023.211e+01 + 9.411e+022.931e+01 9.582e+02 4.699e+01 -
cf21 8.314e+02 3.085e+02 6.858e+022.950e+02 = 5.582e+02 1.762e+02 5.000e+020.000e+00 + 8.315e+022.839e+02 9.096e+02 2.673e+02 =
cf22 9.952e+028.255e+01 1.051e+03 5.977e+01 - 8.591e+021.389e+01 9.031e+02 9.625e+00 - 9.777e+024.260e+01 9.999e+02 3.521e+01 -
cf23 8.146e+02 3.087e+02 7.263e+022.973e+02 = 5.697e+02 1.907e+02 5.060e+024.243e+01 + 8.596e+022.878e+02 8.808e+02 2.743e+02 =
cf24 9.725e+02 2.424e+02 3.463e+023.530e+02 + 9.785e+02 1.124e+02 2.000e+020.000e+00 + 5.809e+023.556e+02 5.932e+02 3.758e+02 =
cf25 1.675e+031.595e+01 1.713e+03 1.701e+01 - 1.649e+03 2.918e+00 1.641e+036.573e+00 + 1.669e+031.306e+01 1.700e+03 1.108e+01 -

Total number of (+/=/-): 6/11/8 16/4/5 2/11/12

DE/best/2 Pro DE/best/2 DE/rand/2 Pro DE/rand/2 DE/current-to-best/2 Pro DE/current-to-best/2
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 4.075e-01 1.397e-01 0.000e+000.000e+00 + 0.000e+000.000e+00 0.000e+000.000e+00 =
cf2 0.000e+000.000e+00 0.000e+000.000e+00 = 2.789e+03 6.676e+02 1.225e+024.465e+01 + 0.000e+000.000e+00 0.000e+000.000e+00 =
cf3 1.842e+05 9.642e+04 1.245e+057.092e+04 + 3.793e+07 8.031e+06 4.471e+061.323e+06 + 8.594e+04 5.361e+04 5.417e+044.670e+04 +
cf4 3.477e+02 1.951e+03 2.000e-051.414e-04 + 6.998e+03 1.553e+03 8.728e+023.046e+02 + 0000e+000.000e+00 0.000e+000.000e+00 =
cf5 4.586e+013.180e+02 6.732e+01 1.132e+02 - 1.611e+034.637e+02 2.060e+03 2.780e+02 - 0.000e+000.000e+00 9.150e-02 6.274e-02 -
cf6 5.582e-011.397e+00 1.196e+00 1.846e+00 = 3.612e+03 1.890e+03 1.960e+018.975e-01 + 1.595e-017.892e-01 2.392e-01 9.565e-01 =
cf7 4.609e+031.184e+02 4.696e+03 6.966e-03 - 4.671e+032.017e+01 4.811e+03 1.310e+01 - 4.695e+035.519e+00 4.696e+03 1.837e-12 -
cf8 2.095e+01 4.929e-02 2.094e+015.294e-02 = 2.095e+01 4.303e-02 2.095e+015.467e-02 = 2.095e+01 4.476e-02 2.094e+016.119e-02 =
cf9 1.725e+02 1.609e+01 4.493e+011.113e+01 + 2.061e+02 1.248e+01 1.878e+021.001e+01 + 1.694e+029.850e+00 1.724e+02 8.759e+00 =
cf10 1.985e+02 1.780e+01 1.306e+026.338e+01 + 2.321e+02 1.113e+01 2.061e+021.149e+01 + 1.898e+021.147e+01 1.899e+02 8.673e+00 =
cf11 3.231e+01 9.431e+00 3.133e+011.200e+01 = 3.967e+01 1.051e+00 3.964e+011.050e+00 = 3.960e+011.126e+00 3.964e+01 1.048e+00 =
cf12 1.487e+05 2.571e+05 2.233e+033.439e+03 + 9.199e+05 1.270e+05 2.588e+051.100e+05 + 4.450e+04 7.800e+04 1.285e+031.542e+03 +
cf13 1.607e+01 1.464e+00 3.856e+001.783e+00 + 2.360e+01 1.429e+00 1.738e+019.139e-01 + 1.584e+01 9.103e-01 1.534e+018.793e-01 +
cf14 1.309e+012.856e-01 1.329e+01 1.842e-01 - 1.373e+01 1.527e-01 1.339e+011.586e-01 + 1.343e+01 1.627e-01 1.329e+011.253e-01 +
cf15 4.284e+02 7.646e+01 3.556e+021.130e+02 + 4.220e+02 7.917e+01 4.020e+021.414e+01 = 3.439e+021.107e+02 3.790e+02 9.150e+01 =
cf16 2.971e+02 9.141e+01 2.358e+021.330e+02 + 2.793e+02 3.921e+01 2.317e+021.016e+01 + 2.953e+02 9.467e+01 2.633e+027.366e+01 =
cf17 3.334e+02 1.004e+02 3.122e+021.191e+02 = 3.068e+02 3.873e+01 2.565e+021.290e+01 + 3.024e+02 8.764e+01 2.779e+028.574e+01 =
cf18 9.071e+02 3.466e+00 9.004e+023.010e+01 + 9.063e+021.813e-01 9.096e+02 1.215e+00 - 9.055e+02 1.686e+00 8.911e+023.720e+01 =
cf19 9.117e+02 2.165e+01 8.985e+023.329e+01 + 9.062e+021.883e-01 9.096e+02 1.102e+00 - 9.054e+02 1.552e+00 8.784e+024.699e+01 =
cf20 9.078e+02 4.287e+00 8.936e+023.825e+01 = 9.062e+022.183e-01 9.096e+02 1.019e+00 - 9.053e+02 1.561e+00 8.888e+023.918e+01 =
cf21 1.030e+03 1.833e+02 5.603e+021.218e+02 + 8.957e+02 2.830e+02 5.000e+020.000e+00 + 9.477e+02 2.542e+02 5.300e+029.091e+01 +
cf22 8.980e+023.467e+01 9.277e+02 1.944e+01 - 8.553e+021.974e+01 9.459e+02 7.421e+00 - 8.754e+022.075e+01 9.124e+02 1.066e+01 -
cf23 1.025e+03 1.808e+02 5.528e+021.233e+02 + 8.680e+02 2.891e+02 5.000e+020.000e+00 + 1.004e+03 2.055e+02 5.180e+027.197e+01 +
cf24 9.185e+02 9.400e+01 2.000e+020.000e+00 + 9.814e+02 2.377e+01 2.000e+020.000e+00 + 9.913e+02 1.666e+01 2.000e+020.000e+00 +
cf25 1.644e+031.286e+01 1.659e+03 1.112e+01 - 1.651e+032.052e+00 1.688e+03 3.247e+00 - 1.653e+035.448e+00 1.672e+03 3.710e+00 -

Total number of (+/=/-): 13/7/5 15/3/7 7/14/4

The population for all DE variants, over all the benchmark
functions, was initialized using a uniform random number
distribution with the same random seeds.

To evaluate the performance of the algorithms we will
use thesolution error measure, defined asf(x′) − f(x⋆),
wherex⋆ is the global optimum of the benchmark function
and x′ is the best solution achieved after104 · D function
evaluations [78], whereD is the dimensionality of the problem
at hand. Each algorithm was executed independently 100
times, to obtain an estimate of the mean solution error and
its standard deviation. For each pair of original mutation
strategy and its proximity-based variant, we use boldface font
to indicate the best performance in terms of mean solution
error. To evaluate the statistical significance of the observed
performance differences we apply a two-sided Wilcoxon rank

sum test between the original mutation strategies and their
proximity-based variants. The null hypothesis in each testis
that the samples compared are independent samples from iden-
tical continuous distributions with equal medians. We mark
with “+” the cases when the null hypothesis is rejected at the
5% significance level and the proximity-based variant exhibits
superior performance, with “-” when the null hypothesis is
rejected at the same level of significance and the proximity-
based variant exhibits inferior performance and with “=” when
the performance difference is not statistically significant. At
the bottom of each table, for each pair, we also show the
total number of the aforementioned statistical significantcases
(+/=/-). Finally, we underline the algorithm that exhibitsthe
best result in each benchmark function.



10

TABLE II
ERROR VALUES OF THE ORIGINALDE MUTATION STRATEGIES AND THEIR CORRESPONDING PROXIMITY-BASED VARIANTS OVER THE50–DIMENSIONAL

CEC 2005BENCHMARK SET

DE/best/1 Pro DE/best/1 DE/rand/1 Pro DE/rand/1 DE/current-to-best/1 Pro DE/current-to-best/1
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 = 2.198e+021.792e+02 5.241e+02 3.542e+02 -
cf2 0.000e+000.000e+00 0.000e+000.000e+00 = 3.960e+03 9.307e+02 3.254e+021.093e+02 + 2.136e+031.128e+03 2.662e+03 1.368e+03 -
cf3 3.270e+05 1.439e+05 1.440e+057.123e+04 + 5.404e+07 1.310e+07 7.509e+061.766e+06 + 1.089e+076.857e+06 1.196e+07 6.456e+06 =
cf4 3.473e+03 3.649e+03 1.133e+031.312e+03 + 1.180e+04 3.332e+03 2.476e+036.914e+02 + 1.489e+031.068e+03 1.532e+03 1.042e+03 =
cf5 4.674e+03 1.098e+03 4.608e+031.038e+03 = 1.709e+036.938e+02 2.192e+03 2.949e+02 - 7.462e+031.326e+03 7.982e+03 1.078e+03 -
cf6 8.771e-011.668e+00 1.116e+00 1.808e+00 = 4.231e+01 1.182e+01 3.855e+011.776e+01 + 1.078e+071.237e+07 3.382e+07 3.099e+07 -
cf7 6.235e+03 1.902e+02 6.195e+034.594e-12 + 6.195e+034.594e-12 6.199e+03 5.281e-01 - 6.669e+031.795e+02 6.771e+03 1.407e+02 -
cf8 2.113e+01 3.904e-02 2.113e+013.087e-02 = 2.114e+01 3.330e-02 2.114e+014.345e-02 = 2.113e+01 4.841e-02 2.112e+013.798e-02 =
cf9 2.091e+02 4.272e+01 1.951e+023.987e+01 = 3.468e+02 1.199e+01 1.382e+021.366e+01 + 1.406e+022.939e+01 1.554e+02 2.977e+01 -
cf10 2.378e+025.911e+01 2.617e+02 6.366e+01 = 3.763e+02 1.578e+01 3.529e+021.482e+01 + 1.717e+024.524e+01 2.107e+02 4.353e+01 -
cf11 4.269e+01 7.379e+00 4.210e+015.234e+00 = 7.264e+01 1.212e+00 7.263e+011.614e+00 = 2.950e+014.451e+00 3.141e+01 5.123e+00 -
cf12 2.749e+05 2.925e+05 6.740e+036.345e+03 + 2.049e+06 5.887e+05 9.192e+037.919e+03 + 2.505e+05 1.137e+05 7.933e+043.736e+04 +
cf13 2.281e+01 7.498e+00 2.107e+017.419e+00 = 3.296e+01 1.446e+00 2.238e+012.494e+00 + 1.412e+018.942e+00 1.546e+01 9.144e+00 =
cf14 2.179e+01 5.072e-01 2.108e+017.160e-01 + 2.339e+01 1.486e-01 2.304e+011.389e-01 + 2.186e+01 4.091e-01 2.183e+015.069e-01 =
cf15 4.990e+02 7.981e+01 4.248e+025.845e+01 + 2.047e+022.819e+01 4.000e+02 0.000e+00 - 4.489e+02 5.001e+01 4.298e+024.158e+01 =
cf16 2.520e+02 1.058e+02 2.391e+021.044e+02 = 2.715e+02 1.470e+01 2.479e+029.706e+00 + 1.812e+02 1.157e+02 1.806e+021.001e+02 =
cf17 2.616e+029.805e+01 2.772e+02 1.097e+02 = 3.049e+02 2.457e+01 2.735e+021.049e+01 + 1.724e+028.798e+01 1.840e+02 1.064e+02 =
cf18 9.519e+022.242e+01 9.958e+02 2.375e+01 - 9.151e+02 6.997e-01 8.928e+024.981e+01 + 9.745e+021.704e+01 9.930e+02 1.688e+01 -
cf19 9.489e+021.704e+01 9.903e+02 2.706e+01 - 9.154e+02 5.033e-01 8.836e+025.534e+01 + 9.753e+021.585e+01 9.914e+02 1.853e+01 -
cf20 9.509e+022.111e+01 9.868e+02 2.346e+01 - 9.153e+02 5.553e-01 9.001e+024.417e+01 + 9.736e+022.018e+01 9.962e+02 1.766e+01 -
cf21 1.042e+03 2.088e+01 6.970e+023.033e+02 + 1.004e+03 1.101e+00 5.000e+020.000e+00 + 7.930e+022.516e+02 9.818e+02 2.708e+02 -
cf22 9.837e+024.562e+01 1.071e+03 4.943e+01 - 9.061e+023.577e+00 9.586e+02 1.018e+01 - 1.020e+033.024e+01 1.058e+03 2.456e+01 -
cf23 1.005e+03 1.366e+02 6.700e+022.821e+02 + 1.003e+03 1.029e+00 5.000e+020.000e+00 + 7.381e+022.312e+02 8.923e+02 2.823e+02 -
cf24 1.103e+037.326e+01 1.126e+03 3.130e+02 - 1.038e+03 1.717e+00 2.000e+020.000e+00 + 1.022e+033.010e+02 1.180e+03 1.258e+02 -
cf25 1.715e+031.764e+01 1.777e+03 1.898e+01 - 1.688e+032.591e+00 1.709e+03 3.603e+00 - 1.717e+031.094e+01 1.755e+03 1.220e+01 -

Total number of (+/=/-): 8/11/6 17/3/5 1/8/16

DE/best/2 Pro DE/best/2 DE/rand/2 Pro DE/rand/2 DE/current-to-best/2 Pro DE/current-to-best/2
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 6.899e+03 8.880e+02 1.217e+023.143e+01 + 0.000e+000.000e+00 0.000e+000.000e+00 =
cf2 6.836e+01 8.537e+01 5.139e+002.709e+00 + 9.715e+04 8.252e+03 5.834e+046.223e+03 + 5.934e+02 1.328e+02 1.028e+022.798e+01 +
cf3 4.328e+06 1.598e+06 2.641e+069.875e+05 + 4.859e+08 6.865e+07 2.687e+084.238e+07 + 1.451e+07 2.936e+06 6.597e+061.459e+06 +
cf4 5.346e+03 6.011e+03 1.523e+038.763e+02 + 1.390e+05 1.502e+04 7.970e+048.841e+03 + 4.268e+03 9.739e+02 2.107e+035.709e+02 +
cf5 2.746e+03 1.769e+03 2.740e+035.324e+02 = 2.126e+04 1.720e+03 1.785e+049.111e+02 + 1.035e+031.155e+03 2.287e+03 5.298e+02 -
cf6 1.439e+01 1.028e+01 3.434e+002.767e+00 + 6.040e+08 1.238e+08 4.587e+051.577e+05 + 2.583e+01 1.463e+01 1.622e+011.196e+01 +
cf7 6.205e+035.419e+01 6.322e+03 3.314e+01 - 6.201e+032.003e+00 8.391e+03 1.181e+02 - 6.195e+034.594e-12 6.236e+03 6.720e+00 -
cf8 2.114e+01 3.572e-02 2.114e+013.384e-02 = 2.114e+01 3.143e-02 2.113e+014.171e-02 = 2.113e+01 3.968e-02 2.113e+013.402e-02 =
cf9 3.806e+02 3.573e+01 2.777e+021.001e+02 + 4.596e+02 1.477e+01 4.413e+021.935e+01 + 3.653e+021.772e+01 3.933e+02 1.873e+01 -
cf10 4.223e+02 2.514e+01 4.072e+022.742e+01 + 5.344e+02 1.467e+01 4.671e+021.751e+01 + 3.988e+021.363e+01 4.067e+02 2.008e+01 -
cf11 7.050e+017.783e+00 7.286e+01 1.513e+00 = 7.253e+011.553e+00 7.287e+01 1.267e+00 = 7.309e+01 1.275e+00 7.249e+011.681e+00 =
cf12 3.813e+05 3.877e+05 6.504e+036.901e+03 + 4.879e+06 3.996e+05 2.425e+061.833e+05 + 1.538e+05 2.758e+05 1.147e+051.969e+05 +
cf13 3.396e+01 2.146e+00 3.088e+012.132e+00 + 2.873e+05 1.109e+05 4.247e+011.876e+00 + 3.366e+01 1.824e+00 3.293e+011.321e+00 +
cf14 2.314e+01 2.062e-01 2.306e+011.928e-01 = 2.360e+01 1.387e-01 2.318e+011.702e-01 + 2.328e+01 1.458e-01 2.305e+011.407e-01 +
cf15 3.927e+02 5.897e+01 2.791e+028.862e+01 + 9.125e+02 1.553e+01 4.453e+022.914e+00 + 2.760e+028.419e+01 3.240e+02 1.079e+02 =
cf16 3.278e+02 4.836e+01 3.120e+024.674e+01 + 3.805e+02 1.884e+01 3.251e+021.166e+01 + 3.225e+02 4.977e+01 3.001e+023.625e+01 =
cf17 3.666e+02 5.547e+01 3.562e+025.005e+01 = 4.378e+02 2.531e+01 3.772e+021.603e+01 + 3.428e+02 4.725e+01 3.329e+023.840e+01 =
cf18 9.202e+02 8.482e+00 8.871e+021.268e+02 + 9.412e+026.037e+00 1.001e+03 6.688e+00 - 9.157e+02 1.964e+00 8.088e+022.127e+02 +
cf19 9.193e+02 6.276e+00 9.172e+023.634e+01 + 9.398e+025.601e+00 1.000e+03 6.091e+00 - 9.156e+02 8.459e-01 8.610e+021.703e+02 +
cf20 9.192e+02 6.324e+00 8.786e+021.520e+02 + 9.408e+025.730e+00 1.000e+03 6.548e+00 - 9.154e+02 1.449e+00 8.687e+021.274e+02 +
cf21 1.011e+03 3.265e+01 5.240e+028.221e+01 + 1.028e+03 2.190e+00 5.307e+027.809e+00 + 1.005e+03 3.089e+00 5.060e+024.243e+01 +
cf22 9.445e+023.246e+01 9.878e+02 1.545e+01 - 9.253e+021.030e+01 1.106e+03 1.330e+01 - 9.193e+021.592e+01 9.804e+02 1.410e+01 -
cf23 1.011e+03 3.223e+01 5.000e+020.000e+00 + 1.028e+03 2.243e+00 5.291e+026.513e+00 + 1.007e+03 7.759e+00 5.180e+027.197e+01 +
cf24 1.039e+03 1.774e+01 2.000e+020.000e+00 + 1.043e+03 7.243e+00 3.313e+023.470e+01 + 1.041e+03 4.154e+00 2.000e+020.000e+00 +
cf25 1.685e+038.853e+00 1.722e+03 6.387e+00 - 1.697e+032.288e+00 1.798e+03 5.523e+00 - 1.692e+033.666e+00 1.732e+03 3.349e+00 -

Total number of (+/=/-): 16/6/3 17/6/2 13/6/6

Table I reports the results on the 30–dimensional version
of the CEC 2005 benchmark set. We observe that for the
explorative mutation strategies, DE/rand/1 and DE/rand/2, the
incorporation of the proximity-based framework yields signifi-
cant performance, with the best results obtained for DE/rand/1.
For DE/rand/2, it exhibits substantial performance improve-
ment in most of the unimodal functions (cf1 − cf6) with the
exception ofcf5. Furthermore, there are 5 hybrid composi-
tion multimodal functions in which the proposed framework
deteriorates performance slightly (cf18− cf20, cf22 andcf25).
The framework, however, yields a significant improvement in
the other5 hybrid functions (cf16, cf17, cf21, cf23 and cf24).
For DE/current-to-best/2 although the mean error is smaller
in most cases the improvement is significant in 7 cases. In
this strategy, the proposed framework does not hinder the

algorithm’s performance on the hybrid multimodal functions.

For the two exploitative strategies, DE/best/1, DE/current-
to-best/1, the proximity-based framework does not yield sim-
ilar performance improvement. DE/best/1 in most of the uni-
modal and multimodal functions exhibits either marginal im-
provement (cf3, cf7, cf9, cf12, cf15 andcf24) or an equal per-
formance, while in five hybrid functions the proposed frame-
work deteriorates performance slightly (cf18 − cf20, cf22 and
cf25). DE/current-to-best/1 is not improved by the proximity-
based framework. In general, this strategy produces the largest
errors, which indicate its inability to locate global minimizers.
This is more evident for the unimodal functionscf1–cf5. This
behavior also explains the inability of the proposed approach
to improve it. DE/current-to-best/1 is so exploitative that it
has difficulty in locating the minimizers. This implies thatit
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is highly unlikely for this strategy to produce a local structure
that could be exploited from the proximity framework. Note
also that this strategy utilizes only two random individuals to
generate an offspring, whereas the similar and also exploitative
DE/current-to-best/2 strategy uses four. Finally, despite the
exploitative character of DE/best/2 the proximity framework
enhances its performance in most multimodal and hybrid func-
tions. The original DE/best/2 exhibits superior performance in
five cases only (cf5, cf7, cf14, cf22 andcf25). It must be noted
that qualitatively similar results were also obtained for the
YAO benchmark function set [75], but due to space limitations,
we do not present them here.

We further evaluate the proposed framework on the 50–
dimensional version of the CEC 2005 set of benchmark
functions. Higher dimensional problems are typically harder to
solve and a common practice is to employ a larger population
size. At present we increased the population size to 200,
but we did not attempt to fine tune this parameter to obtain
optimal performance. In this set of experiments algorithms
terminated after performing500, 000 function evaluations [78].
The results summarized in Table II indicate that the behavior
on the 50–dimensional benchmark function set is very similar
to that on the 30–dimensional benchmark. The main differ-
ence is that the improvement of using the proximity-based
approach is now statistically significant in the majority of
the test functions. Despite the exploitative character of the
DE/current-to-best/2 strategy its proximity-based modification
is superior in most of the unimodal, multimodal and hybrid
composition functions in this benchmark function set. On the
other hand, the proximity framework does not improve the
exploitative operator DE/current-to-best/1 strategy, while there
is a marginal improvement for DE/best/1 in two unimodal and
six multimodal functions.

Overall the comparison of each of the original DE mutation
strategies with its proximity-based variant indicates that the
proposed framework significantly improves the explorative
strategies. Exploitative strategies are not improved whenthe
original strategy is already too greedy and on some hard highly
multimodal functions. Note however that in relatively few of
the latter cases the proximity-based framework deteriorates
performance significantly.

B. Comparison Against Other DE Variants

In this subsection we apply the proximity-based frame-
work on eight well known and widely used DE variants.
Specifically, we implement the proximity framework on: i) the
Trigonometric Differential Evolution (TDE) [39], ii) the Op-
position based Differential Evolution (ODE) [40], [41], iii) the
Differential Evolution with Global and Local Neighborhoods
(DEGL) [25], [42], iv) the Balanced Differential Evolution
(BDE) [22], v) the Self-Adaptive Control Parameters in DE
algorithm (jDE) [31], vi) the Adaptive Differential Evolution
with optional external archive algorithm (JADE) [18], [26],
vii) the Differential Evolution algorithm with Strategy Adap-
tation (SaDE) [27], [43], and viii) the Differential Evolution
Algorithm with Random Localization (DERL) [44].

We evaluate the performance of the eight DE variants
and their corresponding proximity-based modifications over

the 30–dimensional version of the CEC 2005 function set.
Table III reports the experimental results for the first six DE
variants, TDE, ODE, BDE, jDE JADE and SaDE. The results
show that the proximity framework influences substantially
the performance of TDE, jDE and ODE. Specifically, in nine
functions the performance of TDE is not significantly different
from that of Pro TDE. In 11 of the 25 functions Pro TDE
achieves a significantly better performance. The benefit from
the proximity framework is evident in the unimodal function
cf5, most of the basic multimodal functions, the two expanded
functions (cf13 and cf14), and in most of the hybrid compo-
sition functions (cf16 − cf20 and cf24). TDE is significantly
better than Pro TDE in only four functions (cf4, cf15, cf22,
and cf25). Overall therefore, TDE is substantially enhanced
through the proximity framework. Note that TDE is based on
DE/rand/1 and the proximity-based framework has been shown
to substantially improve this strategy.

For the Opposition-based DE, we observe that the proximity
framework efficiently exploits the population structure and
guides the evolution towards more promising solutions. As
Table III indicates, Pro ODE outperforms ODE in fourteen
cases and exhibits similar performance in seven functions.
Particularly, in four out of five unimodal functions Pro ODE
produces lower mean error values. The performance difference
is statistically significant incf1 andcf5, while in cf2 andcf4 it
is not. Moreover, in basic multimodal and expanded functions
Pro ODE performs either as well as ODE (cf7, cf8, cf10 and
cf13) or significantly better (cf6, cf9, cf11, cf12 and cf14).
On the other hand, ODE is significantly superior only in
four test functions (cf3, cf15, cf22, and cf25). Furthermore,
the proximity framework produces substantial improvement
in the optimization of hybrid composition functions which
are characterized by a huge number of local minima. Pro
ODE significantly outperforms ODE in seven out of eleven
hybrid composition functions, (cf16, cf17, cf19 − cf21, cf23,
andcf24). Note that although the population in ODE changes
rapidly, due to the opposition mechanism, the proximity ap-
proach efficiently exploits the population structure and guides
the evolution process successfully towards more promising
solutions.

Pro BDE either enhances BDE or performs equally well. In
more detail, BDE is enhanced by the proximity framework in
nine functions (three unimodal and six multimodal), while the
performance of the two is not statistically different in thema-
jority of functions (thirteen of the twenty five functions).The
impact of the proximity framework is evident in the expanded
and hybrid composition functions (cf13, cf15, cf18 − cf20 and
cf22). Moreover, BDE significantly outperforms Pro BDE only
in three functions (cf3, cf14 andcf23).

jDE is substantially enhanced by the proximity framework.
Pro jDE exhibits either significantly better or similar per-
formance in 23 of the 25 functions. Only incf3 and cf25
jDE significantly outperforms Pro jDE. More specifically, in
the unimodal functions Pro jDE is significantly better incf3
and cf4 and exhibits similar performance incf1 and cf2. In
the basic multimodal functions, Pro jDE generally produces
smaller or equal mean error to jDE (cf6 − cf12 except for
cf9) and a significant enhancement incf6, cf10, andcf11. In
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TABLE III
ERROR VALUES OF THE ORIGINALTDE, ODE, BDE,JDE, JADE, SADE ALGORITHMS AND THEIR CORRESPONDING PROXIMITY-BASED VARIANTS

OVER THE 30–DIMENSIONAL CEC 2005BENCHMARK SET

TDE Pro TDE ODE Pro ODE BDE Pro BDE
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 3.970e-02 2.269e-01 0.000e+000.000e+00 + 0.000e+000.000e+00 0.000e+000.000e+00 =
cf2 0.000e+000.000e+00 0.000e+000.000e+00 = 4.200e-03 1.807e-02 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 =
cf3 5.003e+052.907e+05 5.462e+05 2.061e+05 = 3.836e+051.538e+05 5.639e+05 2.855e+05 - 4.219e+043.647e+04 6.101e+04 2.946e+04 -
cf4 6.200e-043.149e-03 3.340e-03 3.008e-03 - 2.314e-02 5.476e-02 1.352e-022.317e-02 = 1.443e+00 1.020e+01 0.000e+000.000e+00 +
cf5 1.159e+03 5.486e+02 8.294e+022.541e+02 + 3.889e+02 3.428e+02 1.663e+021.741e+02 + 3.288e+02 3.649e+02 5.469e+001.676e+01 +
cf6 3.449e+02 2.024e+03 2.942e+011.750e+01 + 1.359e+06 6.516e+06 5.773e+014.148e+01 + 1.834e+00 2.007e+00 1.276e+001.879e+00 =
cf7 4.696e+03 1.837e-12 4.696e+03 1.837e-12 = 4.696e+03 1.837e-12 4.696e+03 1.837e-12 = 4.711e+03 9.901e+01 4.623e+031.469e+02 +
cf8 2.095e+01 4.631e-02 2.094e+015.047e-02 = 2.095e+01 5.900e-02 2.095e+015.184e-02 = 2.093e+015.278e-02 2.095e+01 4.741e-02 =
cf9 1.524e+01 1.117e+01 1.386e+013.761e+00 = 1.933e+01 7.090e+00 1.605e+013.897e+00 + 5.415e+01 3.564e+01 5.095e+011.720e+01 =
cf10 1.657e+02 9.457e+00 1.642e+029.791e+00 = 3.737e+011.559e+01 3.763e+01 1.277e+01 = 8.273e+01 6.000e+01 5.573e+012.685e+01 =
cf11 3.938e+01 1.149e+00 3.844e+012.311e+00 + 1.739e+01 7.264e+00 7.848e+003.340e+00 + 2.839e+01 1.077e+01 2.610e+011.158e+01 =
cf12 2.819e+04 3.015e+04 4.222e+034.758e+03 + 2.258e+04 2.525e+04 3.071e+032.391e+03 + 4.237e+049.659e+04 4.344e+04 6.796e+04 =
cf13 1.278e+01 1.747e+00 3.730e+002.095e+00 + 2.953e+00 5.820e-01 2.903e+006.246e-01 = 6.280e+00 4.015e+00 4.523e+003.235e+00 +
cf14 1.333e+01 2.021e-01 1.321e+011.943e-01 + 1.326e+01 2.522e-01 1.283e+013.995e-01 + 1.274e+015.181e-01 1.297e+01 4.022e-01 -
cf15 3.087e+021.012e+02 3.860e+02 5.718e+01 - 3.353e+021.058e+02 4.201e+02 5.727e+01 - 4.086e+02 7.225e+01 3.738e+029.279e+01 +
cf16 2.261e+02 6.978e+01 1.744e+028.096e+01 + 9.672e+01 7.248e+01 5.408e+011.965e+01 + 2.383e+021.574e+02 2.629e+02 1.751e+02 =
cf17 2.609e+02 8.430e+01 1.948e+021.212e+01 + 9.586e+01 7.529e+01 7.417e+014.456e+01 + 2.323e+021.583e+02 2.436e+02 1.653e+02 =
cf18 9.052e+02 1.992e+00 8.897e+023.960e+01 + 9.044e+02 9.994e-01 8.762e+024.800e+01 = 9.128e+02 1.057e+01 9.085e+024.961e+00 +
cf19 9.050e+02 1.434e+00 8.916e+023.740e+01 + 9.045e+02 8.907e-01 8.872e+024.131e+01 + 9.167e+02 1.841e+01 9.080e+022.881e+00 +
cf20 9.054e+02 1.782e+00 8.920e+023.755e+01 + 9.045e+02 1.137e+00 8.849e+024.292e+01 + 9.128e+02 7.249e+00 9.085e+023.227e+00 +
cf21 5.000e+022.622e-01 5.000e+020.000e+00 = 5.659e+02 1.822e+02 5.060e+024.243e+01 + 6.761e+022.593e+02 7.878e+02 2.966e+02 =
cf22 8.667e+021.598e+01 9.055e+02 8.301e+00 - 8.703e+022.011e+01 9.031e+02 1.054e+01 - 8.988e+02 2.739e+01 8.854e+022.141e+01 +
cf23 5.000e+029.496e-02 5.000e+020.000e+00 = 5.825e+02 2.059e+02 5.120e+025.938e+01 + 6.359e+022.517e+02 7.579e+02 2.874e+02 -
cf24 4.688e+02 3.784e+02 2.000e+020.000e+00 + 6.252e+02 3.965e+02 2.000e+020.000e+00 + 7.420e+023.589e+02 8.825e+02 2.561e+02 =
cf25 1.620e+037.223e+00 1.637e+03 8.744e+00 - 1.631e+031.115e+01 1.650e+03 7.670e+00 - 1.636e+031.029e+01 1.639e+03 1.025e+01 =

Total number of (+/=/-): 12/9/4 14/7/4 9/13/3

jDE Pro jDE JADE Pro JADE SaDE Pro SaDE
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 =
cf2 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 =
cf3 2.026e+051.062e+05 3.981e+05 2.102e+05 - 9.209e+036.153e+03 1.849e+04 1.437e+04 - 2.129e+069.490e+05 2.280e+06 9.066e+05 =
cf4 3.440e-03 2.304e-02 1.980e-034.048e-03 + 3.805e+00 1.914e+01 0.000e+000.000e+00 + 2.000e-05 1.414e-04 2.000e-05 1.414e-04 =
cf5 6.614e+02 3.056e+02 1.230e+021.151e+02 + 1.963e+02 5.146e+02 5.896e+011.073e+02 + 3.935e+02 2.847e+02 5.505e+011.186e+02 +
cf6 3.196e+01 2.660e+01 3.352e+002.626e+00 + 2.669e+01 6.501e+01 1.886e+013.138e+01 = 1.754e+00 1.999e+00 1.356e+001.908e+00 =
cf7 4.696e+03 1.837e-12 4.696e+03 1.837e-12 = 4.648e+033.002e+01 4.696e+03 1.837e-12 - 4.696e+03 1.837e-12 4.696e+03 1.837e-12 =
cf8 2.095e+01 4.434e-02 2.095e+01 4.420e-02 = 2.095e+01 5.331e-02 2.086e+012.927e-01 = 2.094e+016.041e-02 2.095e+01 5.220e-02 =
cf9 1.540e+013.587e+00 1.707e+01 4.947e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 = 4.179e-01 1.156e+00 0.000e+000.000e+00 +
cf10 1.075e+02 6.888e+01 3.578e+011.258e+01 + 6.315e+011.052e+01 8.180e+01 1.261e+01 - 9.844e+019.514e+00 1.005e+02 3.254e+01 -
cf11 3.931e+01 1.269e+00 1.263e+015.744e+00 + 2.974e+011.727e+00 3.009e+01 1.567e+00 = 3.204e+013.037e+00 3.374e+01 1.434e+00 -
cf12 1.947e+03 1.930e+03 1.849e+031.926e+03 = 2.896e+04 1.125e+04 2.634e+041.160e+04 = 2.322e+03 5.755e+03 1.478e+031.801e+03 =
cf13 4.404e+00 3.329e+00 2.750e+006.322e-01 = 2.481e+002.885e-01 3.324e+00 2.646e-01 - 3.705e+00 2.470e+00 2.949e+002.189e+00 =
cf14 1.329e+01 1.709e-01 1.313e+012.069e-01 + 1.296e+01 2.398e-01 1.291e+012.298e-01 = 1.295e+012.393e-01 1.306e+01 1.949e-01 -
cf15 3.982e+02 7.427e+01 3.960e+022.828e+01 = 3.042e+021.431e+02 3.707e+02 1.027e+02 - 3.698e+026.718e+01 3.864e+02 6.377e+01 =
cf16 1.204e+02 8.210e+01 6.048e+015.013e+01 + 1.509e+02 1.264e+02 1.135e+025.004e+01 = 1.248e+02 8.672e+01 6.973e+013.617e+01 +
cf17 2.336e+02 6.407e+01 8.945e+015.773e+01 + 1.872e+02 1.166e+02 1.454e+025.668e+01 = 1.340e+02 4.715e+01 7.203e+014.306e+01 +
cf18 8.955e+02 3.579e+01 8.870e+024.120e+01 + 9.058e+02 1.692e+00 8.600e+025.592e+01 = 8.481e+025.721e+01 8.555e+02 5.610e+01 =
cf19 8.968e+02 3.265e+01 8.825e+024.428e+01 + 9.053e+02 1.377e+00 8.896e+024.534e+01 + 8.787e+02 5.459e+01 8.668e+025.513e+01 +
cf20 8.906e+02 4.000e+01 8.824e+024.424e+01 + 9.056e+02 1.503e+00 8.959e+023.915e+01 + 8.694e+02 5.746e+01 8.515e+025.638e+01 +
cf21 5.240e+02 8.221e+01 5.000e+020.000e+00 + 5.250e+02 1.080e+02 5.060e+024.243e+01 = 5.317e+02 1.330e+02 5.000e+020.000e+00 =
cf22 9.060e+02 9.828e+00 9.008e+029.866e+00 + 8.723e+022.491e+01 8.952e+02 2.224e+01 - 9.138e+02 1.285e+01 9.091e+028.996e+00 +
cf23 5.180e+02 7.197e+01 5.060e+024.243e+01 = 5.359e+02 1.153e+02 5.000e+020.000e+00 + 5.000e+020.000e+00 5.000e+020.000e+00 =
cf24 2.000e+020.000e+00 2.000e+020.000e+00 = 2.624e+02 2.137e+02 2.000e+020.000e+00 + 2.000e+020.000e+00 2.000e+020.000e+00 =
cf25 1.634e+031.126e+01 1.642e+03 7.715e+00 - 1.642e+032.921e+00 1.667e+03 2.929e+00 - 1.633e+03 6.407e+00 1.632e+036.282e+00 =

Total number of (+/=/-): 13/10/2 6/12/7 7/15/3

cf12 and cf7 − cf9 the performance of the two algorithms
is not statistically different. In the next two functions (cf13
andcf14), Pro jDE exhibits lower mean error and incf14 the
difference is statistically significant. Finally, in most of the
hybrid composition functions (cf15 − cf25) Pro jDE clearly
outperforms jDE. The only case where jDE appears superior is
cf25. Recall that jDE utilizes the DE/rand/1 mutation strategy,
which is greatly improved by the proximity framework.

Pro JADE exhibits either similar or better performance in
18 out of the 25 functions. Specifically, Pro JADE achieves
significantly better performance on two unimodal functions
(cf4 and cf5) and four of the hybrid composition functions
(cf19, cf20, cf23, and cf24). JADE outperforms Pro JADE in
seven functions,cf3, cf7, cf10, cf13, cf15, cf22, andcf25, most
of which are multimodal.

Pro SaDE demonstrates either similar or significantly better
performance in 22 functions (cf5, cf9, cf16, cf17, cf19, cf20,
and cf22). As for the previous algorithms, the impact of the
proximity framework is evident mostly in hybrid composi-
tion functions. In five of these functions, Pro SaDE attains
a statistically significant performance improvement. SaDE
significantly outperforms its proximity variant only in three
functions (cf10, cf11, and cf14). The obtained results show
that the proximity framework rarely hinders the performance
of the efficient self adaptive algorithms, such as JADE and
SaDE. Incorporating the proposed framework typically yields
algorithms with similar or better performance, especiallyin
functions with a multitude of local minima, like the hybrid
composition functions.

DEGL is inspired from PSO and incorporates the concept
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TABLE IV
ERROR VALUES OF THE ORIGINALDEGL, DERLALGORITHMS AND THEIR CORRESPONDING PROXIMITY-BASED VARIANTS OVER THE

30–DIMENSIONAL CEC 2005BENCHMARK SET

DEGL Pro DEGL1 Pro DEGL2 DERL Pro DERL
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 = 0.000e+000.000e+00 4.700e-03 2.689e-02 =
cf2 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 =
cf3 4.230e+04 3.707e+04 4.203e+04 2.606e+04 = 3.856e+042.575e+04 = 6.926e+044.492e+04 8.777e+04 5.098e+04 -
cf4 1.361e+01 4.118e+01 0.000e+000.000e+00 + 0.000e+000.000e+00 + 0.000e+000.000e+00 0.000e+000.000e+00 =
cf5 5.069e+02 5.803e+02 1.907e+016.182e+01 + 5.904e+013.957e+02 + 1.731e+022.921e+02 1.579e+03 4.573e+02 -
cf6 1.196e+001.846e+00 1.196e+001.846e+00 = 1.515e+00 1.955e+00 = 5.928e+021.867e+03 2.568e+06 1.081e+07 -
cf7 4.696e+03 1.177e+00 4.689e+038.806e+01 + 4.692e+034.524e+01 + 4.696e+033.136e-03 4.696e+03 1.837e-12 =
cf8 2.095e+01 4.541e-02 2.094e+016.158e-02 = 2.095e+01 3.346e-02 = 2.095e+014.599e-02 2.102e+01 4.715e-02 -
cf9 6.477e+01 1.597e+01 3.576e+019.749e+00 + 3.801e+011.516e+01 + 2.662e+018.886e+00 4.498e+01 1.442e+01 -
cf10 7.791e+01 2.079e+01 5.182e+011.573e+01 + 5.473e+014.157e+01 + 6.202e+01 5.406e+01 5.840e+012.172e+01 +
cf11 1.785e+013.463e+00 2.008e+01 7.597e+00 = 3.085e+01 1.128e+01 - 3.819e+01 5.133e+00 2.260e+015.892e+00 +
cf12 2.529e+04 3.543e+04 2.351e+042.413e+04 = 2.233e+044.256e+04 = 3.298e+04 3.605e+04 2.360e+032.489e+03 +
cf13 6.179e+00 2.930e+00 3.404e+002.100e+00 + 6.743e+00 4.258e+00 = 2.931e+001.207e+00 4.541e+00 1.509e+00 -
cf14 1.197e+014.399e-01 1.244e+01 3.270e-01 - 1.280e+01 4.564e-01 - 1.313e+01 2.643e-01 1.289e+014.687e-01 +
cf15 4.310e+02 8.986e+01 3.527e+029.868e+01 + 3.619e+028.926e+01 + 3.063e+029.588e+01 3.842e+02 6.574e+01 -
cf16 2.703e+02 1.760e+02 1.761e+021.439e+02 + 1.490e+021.425e+02 + 1.166e+02 1.065e+02 1.095e+021.070e+02 =
cf17 2.000e+02 1.428e+02 1.601e+021.367e+02 + 2.275e+02 1.511e+02 = 2.169e+02 1.276e+02 1.497e+021.353e+02 +
cf18 9.221e+02 1.696e+01 9.089e+024.928e+00 + 9.083e+024.570e+00 + 9.064e+02 2.694e+00 8.982e+024.366e+01 +
cf19 9.191e+02 1.667e+01 9.099e+026.037e+00 + 9.089e+026.152e+00 + 9.065e+02 3.917e+00 8.885e+025.047e+01 +
cf20 9.197e+02 1.875e+01 9.098e+025.907e+00 + 9.077e+022.775e+00 + 9.066e+02 2.320e+00 9.001e+024.111e+01 +
cf21 7.547e+02 2.958e+02 6.794e+022.554e+02 = 6.633e+022.508e+02 = 6.131e+02 2.233e+02 5.678e+021.586e+02 =
cf22 9.199e+02 3.919e+01 8.939e+022.596e+01 + 8.883e+022.518e+01 + 8.741e+022.081e+01 9.204e+02 1.503e+01 -
cf23 7.494e+02 2.952e+02 6.771e+022.536e+02 = 6.685e+022.589e+02 = 5.530e+021.645e+02 5.700e+02 1.871e+02 =
cf24 6.554e+023.812e+02 7.766e+02 3.460e+02 = 6.728e+02 3.864e+02 = 7.284e+02 3.663e+02 2.000e+020.000e+00 +
cf25 1.638e+03 1.150e+01 1.635e+031.103e+01 = 1.632e+031.120e+01 + 1.622e+035.034e+00 1.639e+03 6.131e+00 -

Total number of (+/=/-): 13/11/1 12/11/2 9/7/9

of index neighborhoods [25], [42]. The DEGL algorithm
combines a local and a global mutation model to produce
the mutant individual. In the local model, which promotes
exploration, a neighborhood based on indices is implemented
to select individuals. In the global model, individuals from
the entire population can be selected. Therefore, the proximity
framework, and thus the concept of “real” neighborhoods, can
be incorporated in more than one ways. We denote by Pro
DEGL1 the variant of DEGL in which Pro DE is incorporated
only in the global model. In this case the global model uses
as parents the two individuals closer to the current one, as
given by the proximity framework. A second DEGL variant
(Pro DEGL2) is considered in which the proximity framework
is incorporated in both the local and global models. In this
variant, four individuals are selected through the proximity
framework. To retain the intuition of DEGL, the two individ-
uals closer to the current one are used in the global model, to
promote exploitation, while the other two are utilized in the
local model, to promote exploration.

Table IV summarizes the experimental results for DEGL
and DERL on the 30–dimensional version of the CEC 2005
function set. Both Pro DEGL1 and Pro DEGL2 significantly
outperform DEGL in thirteen and twelve cases, respectively.
In more detail, Pro DEGL1 and Pro DEGL2 exhibit similar
or significantly better performance in all unimodal functions
(cf1 − cf5) and in most of the basic multimodal functions.
In the expanded functions, DEGL outperforms the proximity
variants incf14, while in cf13 Pro DEGL1 is superior and
Pro DEGL2 is not statistically different. The main effect of
the proximity framework is once again observed in the hybrid
composition functions. Pro DEGL1 and Pro DEGL2 exhibit
better performance in seven hybrid composition functions,
while their performance is not statistically different from
DEGL in the remaining four. DERL is significantly better

than Pro DERL in the unimodal functionscf3 and cf5. In
the multimodal functions, Pro DERL significantly outperforms
DERL in nine functions, while its performance is significantly
worse than that of DERL in six functions. The DERL mutation
operator is based on DE/rand/1 and utilizes as base vector
the best of a set of randomly selected individuals. Thus,
introducing the proximity framework could yield an overly
exploitative approach. However, as the experimental results
show, the proximity framework does not hinder the dynamics
of DERL. On the contrary, Pro DERL in most of the functions
either enhances DERL by exploiting the resulting population
structure (as in DE/rand/1) or exhibits similar performance.
In functions where there are no optimization bounds and the
global optimum is located outside the initialization range(e.g.
cf7 andcf25), the local characteristics of the proximity-based
framework do not appear to enhance performance.

Tables V–VI summarize the experimental results of all the
DE variants and their corresponding proximity-based modi-
fications on the 50–dimensional versions of the CEC 2005
function set. As expected, almost all variants exhibit similar
behavior with the 30–dimensional versions of the function set.
The proximity-based framework clearly enhances TDE, ODE,
jDE and DERL in the majority of functions. As previously,
Pro BDE either enhances BDE or performs equally well,
while Pro SaDE attains an equal performance in most of the
functions and only in three cases exhibits a statistically sig-
nificant performance improvement (cf2, cf9 andcf17). On the
other hand, JADE outperforms the proximity variant in nine
functions, most of which are hybrid composition functions.Pro
JADE on the other hand, demonstrates superior performance
in three multimodal and two hybrid composition functions
(cf9, cf11, cf12, cf14 andcf21, cf23, respectively). Pro DEGL1
exhibits a statistically significant better performance inthree
cases (cf3, cf4 andcf24) and attains similar performance in the



14

TABLE V
ERROR VALUES OF THE ORIGINALTDE, ODE, BDE,JDE, JADE, SADE ALGORITHMS AND THEIR CORRESPONDING PROXIMITY-BASED VARIANTS

OVER THE 50–DIMENSIONAL CEC 2005BENCHMARK SET

TDE Pro TDE ODE Pro ODE BDE Pro BDE
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 =
cf2 5.940e+03 1.444e+03 3.557e+021.047e+02 + 7.460e+03 2.530e+03 5.941e+022.662e+02 + 0.000e+000.000e+00 0.000e+000.000e+00 =
cf3 9.855e+07 1.957e+07 5.295e+061.308e+06 + 8.271e+07 1.869e+07 1.116e+072.407e+06 + 6.150e+05 2.114e+05 5.689e+052.085e+05 =
cf4 1.513e+04 3.408e+03 2.280e+036.947e+02 + 1.960e+04 3.996e+03 3.989e+031.512e+03 + 1.488e+013.475e+01 3.547e+01 1.015e+02 =
cf5 1.478e+035.389e+02 2.330e+03 2.324e+02 - 2.104e+037.673e+02 2.322e+03 4.177e+02 - 1.603e+037.517e+02 1.887e+03 8.151e+02 =
cf6 3.549e+016.305e-01 3.783e+01 1.624e+01 - 6.609e+012.913e+01 7.917e+01 3.460e+01 - 3.987e-011.208e+00 1.037e+00 1.767e+00 -
cf7 6.195e+034.594e-12 6.196e+03 4.036e-02 - 6.195e+034.594e-12 6.213e+03 2.356e+00 - 6.195e+03 1.282e-02 6.194e+036.550e+00 =
cf8 2.113e+01 3.215e-02 2.113e+014.420e-02 = 2.114e+01 3.628e-02 2.114e+01 3.377e-02 = 2.114e+01 3.483e-02 2.114e+013.557e-02 =
cf9 3.348e+02 1.260e+01 1.850e+022.245e+01 + 2.231e+02 2.711e+01 1.767e+021.806e+01 + 2.455e+02 1.099e+02 1.028e+024.449e+01 +
cf10 3.599e+02 1.226e+01 3.477e+021.316e+01 + 1.331e+021.109e+02 1.900e+02 1.322e+02 - 3.501e+02 1.945e+01 1.484e+021.177e+02 +
cf11 7.315e+01 1.217e+00 7.273e+011.291e+00 = 4.370e+01 2.283e+01 1.154e+013.315e+00 + 7.278e+01 1.301e+00 6.139e+011.966e+01 =
cf12 5.022e+05 5.360e+05 1.428e+048.611e+03 + 8.331e+05 7.064e+05 1.126e+048.078e+03 + 1.873e+05 3.140e+05 1.306e+051.905e+05 =
cf13 3.178e+01 1.524e+00 2.657e+011.212e+00 + 2.348e+01 1.955e+00 1.789e+012.686e+00 + 2.820e+01 2.372e+00 9.629e+007.790e+00 +
cf14 2.331e+01 1.420e-01 2.296e+011.663e-01 + 2.320e+01 1.884e-01 2.286e+012.150e-01 + 2.318e+01 2.144e-01 2.308e+012.586e-01 =
cf15 2.000e+022.230e-03 3.840e+02 5.481e+01 - 2.282e+027.003e+01 3.880e+02 4.799e+01 - 3.254e+026.195e+01 3.517e+02 7.057e+01 -
cf16 2.724e+02 2.770e+01 2.447e+028.253e+00 + 1.315e+028.142e+01 1.354e+02 9.116e+01 = 2.890e+02 5.498e+01 1.659e+021.079e+02 +
cf17 2.887e+02 2.024e+01 2.685e+021.105e+01 + 1.994e+027.025e+01 2.609e+02 4.309e+01 - 3.127e+02 6.154e+01 2.425e+021.287e+02 +
cf18 9.134e+02 1.552e+00 8.908e+029.505e+01 + 9.156e+02 5.774e-01 8.859e+025.414e+01 + 9.215e+025.931e+00 9.254e+02 8.857e+00 -
cf19 9.133e+02 1.512e+00 8.956e+024.831e+01 + 9.156e+02 5.922e-01 8.813e+025.637e+01 + 9.217e+02 1.165e+01 9.215e+028.476e+00 =
cf20 9.129e+02 1.429e+00 9.030e+024.199e+01 + 9.157e+02 4.992e-01 8.907e+025.148e+01 + 9.228e+02 6.646e+00 9.223e+025.959e+00 =
cf21 1.002e+03 7.508e-01 5.000e+020.000e+00 + 1.005e+03 1.342e+00 5.060e+024.243e+01 + 1.008e+033.070e+01 1.009e+03 5.803e+01 -
cf22 9.024e+022.782e+00 9.561e+02 1.176e+01 - 9.078e+022.700e+00 9.637e+02 1.068e+01 - 9.286e+02 2.880e+01 9.243e+022.344e+01 =
cf23 1.002e+03 8.619e-01 5.000e+020.000e+00 + 1.005e+03 1.214e+00 5.000e+020.000e+00 + 1.013e+03 8.372e+00 9.921e+028.810e+01 =
cf24 1.036e+03 1.393e+00 2.000e+020.000e+00 + 9.692e+02 2.292e+02 2.000e+020.000e+00 + 8.690e+02 3.379e+02 8.193e+023.572e+02 +
cf25 1.684e+033.518e+00 1.702e+03 4.503e+00 - 1.690e+031.776e+00 1.714e+03 3.084e+00 - 1.676e+03 1.051e+01 1.674e+031.149e+01 =

Total number of (+/=/-): 16/3/6 14/3/8 6/15/4

jDE Pro jDE JADE Pro JADE SaDE Pro SaDE
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 =
cf2 5.202e+03 1.486e+03 3.205e+021.146e+02 + 0.000e+000.000e+00 0.000e+000.000e+00 = 2.280e-03 8.545e-03 7.400e-041.426e-03 +
cf3 2.977e+07 5.744e+06 8.036e+062.123e+06 + 4.436e+04 1.485e+04 4.297e+041.864e+04 = 7.179e+051.007e+06 7.824e+05 1.043e+06 =
cf4 1.654e+04 3.218e+03 2.437e+038.128e+02 + 3.160e-014.134e-01 3.186e-01 4.411e-01 = 9.778e+01 9.835e+01 6.641e+015.384e+01 =
cf5 4.206e+03 5.088e+02 2.225e+033.025e+02 + 1.055e+035.485e+02 1.829e+03 4.126e+02 - 1.992e+03 4.256e+02 1.949e+035.185e+02 =
cf6 4.178e+018.910e+00 4.230e+01 2.131e+01 - 4.692e+001.736e+01 1.039e+01 3.460e+01 = 1.137e+011.044e+01 1.148e+01 1.390e+01 =
cf7 6.311e+03 1.596e+01 6.199e+035.581e-01 + 6.193e+031.840e+00 6.195e+03 2.840e-02 - 6.195e+03 4.594e-12 6.195e+03 4.594e-12 =
cf8 2.113e+013.807e-02 2.114e+01 3.461e-02 = 2.114e+01 3.251e-02 2.099e+013.929e-01 = 2.113e+01 3.458e-02 2.113e+01 3.974e-02 =
cf9 3.716e+02 1.409e+01 1.433e+021.523e+01 + 3.352e+01 2.591e+00 2.771e+012.209e+00 + 6.148e+00 1.266e+01 6.610e-013.443e+00 +
cf10 3.843e+02 1.600e+01 3.528e+021.360e+01 + 1.935e+022.060e+01 1.992e+02 1.795e+01 = 6.342e+01 1.287e+01 6.226e+011.204e+01 =
cf11 7.330e+01 1.008e+00 7.245e+011.500e+00 + 6.208e+01 1.777e+00 6.029e+011.733e+00 + 6.634e+01 1.485e+00 6.613e+012.047e+00 =
cf12 1.473e+05 1.928e+05 9.893e+037.099e+03 + 1.768e+05 7.105e+04 9.446e+045.969e+04 + 8.781e+03 7.092e+03 7.336e+037.223e+03 =
cf13 3.260e+01 1.322e+00 2.237e+012.333e+00 + 9.211e+00 4.784e-01 9.142e+005.252e-01 = 8.571e+00 4.416e+00 6.900e+003.452e+00 =
cf14 2.309e+01 1.410e-01 2.307e+011.778e-01 = 2.284e+01 2.983e-01 2.263e+012.552e-01 + 2.284e+01 1.803e-01 2.281e+011.746e-01 =
cf15 4.000e+02 0.000e+00 3.960e+022.828e+01 = 2.569e+028.661e+01 3.800e+02 6.061e+01 - 3.881e+024.800e+01 3.961e+02 2.830e+01 =
cf16 2.716e+02 7.979e+00 2.485e+029.086e+00 + 1.437e+024.007e+01 1.437e+02 1.738e+01 - 4.912e+01 1.003e+01 4.846e+018.343e+00 =
cf17 3.059e+02 1.163e+01 2.723e+029.956e+00 + 1.896e+023.737e+01 1.918e+02 3.403e+01 = 1.241e+02 6.634e+01 9.361e+015.921e+01 +
cf18 9.145e+02 3.417e+01 8.855e+025.390e+01 + 9.206e+022.983e+00 9.264e+02 4.370e+01 - 9.041e+025.208e+01 9.050e+02 5.392e+01 =
cf19 9.141e+02 3.402e+01 8.904e+025.133e+01 + 9.211e+025.326e+00 9.318e+02 2.823e+01 - 9.084e+02 4.736e+01 8.973e+029.973e+01 =
cf20 9.167e+02 2.982e+01 8.876e+029.554e+01 + 9.207e+022.755e+00 9.325e+02 3.630e+01 - 9.152e+02 4.183e+01 9.105e+024.935e+01 =
cf21 5.000e+020.000e+00 5.000e+020.000e+00 = 8.523e+02 2.330e+02 5.000e+020.000e+00 + 5.000e+020.000e+00 5.000e+020.000e+00 =
cf22 9.796e+02 1.055e+01 9.568e+021.117e+01 + 8.987e+029.075e+00 9.486e+02 1.398e+01 - 9.608e+02 6.429e+00 9.603e+026.543e+00 =
cf23 5.000e+020.000e+00 5.000e+020.000e+00 = 8.103e+02 2.455e+02 5.000e+020.000e+00 + 5.000e+020.000e+00 5.060e+02 4.243e+01 =
cf24 2.000e+020.000e+00 2.000e+020.000e+00 = 2.000e+020.000e+00 2.000e+020.000e+00 = 2.000e+020.000e+00 2.000e+020.000e+00 =
cf25 1.728e+03 2.883e+00 1.709e+032.859e+00 + 1.684e+032.182e+00 1.711e+03 4.235e+00 - 1.687e+033.898e+00 1.687e+03 4.170e+00 =

Total number of (+/=/-): 17/7/1 6/10/9 3/22/0

rest of the function set. Finally, Pro DEGL2 exhibits improved
performance in four functions (the unimodalcf4, cf5 and
the hybrid compositionscf19, cf22), while DEGL outperforms
the second proximity-based framework in four multimodal
and two hybrid functions (cf10, cf11, cf13, cf14 andcf16, cf17
respectively).

Finally, in Fig. 7 we present convergence graphs for six of
the 50–dimensional CEC 2005 benchmark functions, namely,
cf3, cf4, cf9, cf11, cf12 andcf13. The graphs illustrate median
solution error value curves for all DE variants considered in
this section obtained from 100 independent simulations. As
previously mentioned the graphs indicate that in most casesthe
proximity-based framework either enhances the convergence
of a strategy or behaves similarly to it. There are relatively
few cases where the proximity-based framework significantly

deteriorates performance.

C. Computational Cost of the proposed framework

Several real-world problems implement computer based
simulations that demand resource-intensive evaluations of the
objective function, e.g. large-scale finite element analysis
(FEA), computational fluid dynamics (CFD), engineering de-
sign problems, or demanding industrial applications [81].Such
simulations can be computationally expensive requiring from
minutes to hours to evaluate a candidate solution.

In the proposed framework, individuals are evolved using
information contained in the Affinity Matrix. The computa-
tional complexity of the proximity framework depends on the
update of this matrix. In the worst case where all individuals
in the current population have been evolved, a situation that
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TABLE VI
ERROR VALUES OF THE ORIGINALDEGL, DERLALGORITHMS AND THEIR CORRESPONDING PROXIMITY-BASED VARIANTS OVER THE

50–DIMENSIONAL CEC 2005BENCHMARK SET

DEGL Pro DEGL1 Pro DEGL2 DERL Pro DERL
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 = 0.000e+000.000e+00 0.000e+000.000e+00 =
cf2 0.000e+000.000e+00 0.000e+000.000e+00 = 0.000e+000.000e+00 = 8.963e+01 3.880e+01 6.240e+003.064e+00 +
cf3 2.311e+05 1.032e+05 1.930e+051.254e+05 + 2.779e+05 1.146e+05 = 9.126e+06 2.847e+06 2.669e+069.487e+05 +
cf4 1.574e+00 9.501e+00 1.080e-012.747e-01 + 6.760e-032.000e-02 + 1.096e+03 4.822e+02 2.769e+021.767e+02 +
cf5 2.093e+03 6.840e+02 2.231e+03 7.426e+02 = 1.625e+035.690e+02 + 5.091e+025.252e+02 1.413e+03 3.605e+02 -
cf6 1.356e+00 1.908e+00 8.771e-011.668e+00 = 1.116e+001.808e+00 = 3.104e+01 2.123e+01 2.337e+011.838e+01 +
cf7 6.195e+03 4.594e-12 6.195e+03 4.594e-12 = 6.195e+03 4.594e-12 = 6.195e+03 4.594e-12 6.195e+03 1.769e-02 +
cf8 2.113e+013.917e-02 2.114e+01 2.969e-02 = 2.113e+014.002e-02 = 2.114e+01 3.786e-02 2.113e+013.547e-02 =
cf9 7.620e+011.706e+01 7.937e+01 2.040e+01 = 1.176e+02 8.655e+01 = 3.356e+02 1.219e+01 4.334e+019.757e+00 +
cf10 1.031e+02 6.612e+01 9.239e+012.767e+01 = 2.974e+02 8.587e+01 - 3.655e+02 1.137e+01 3.174e+026.714e+01 +
cf11 6.290e+01 1.360e+01 6.138e+011.363e+01 = 6.994e+01 1.013e+01 - 7.270e+01 1.510e+00 7.138e+012.010e+00 +
cf12 5.781e+044.566e+04 6.316e+04 6.160e+04 = 6.091e+04 8.453e+04 = 1.058e+05 1.012e+05 6.119e+036.169e+03 +
cf13 6.063e+00 4.361e+00 5.413e+001.426e+00 = 2.473e+01 5.094e+00 - 3.130e+01 1.342e+00 4.939e+001.142e+00 +
cf14 2.262e+01 3.180e-01 2.255e+013.143e-01 = 2.296e+01 2.719e-01 - 2.336e+01 1.936e-01 2.304e+011.517e-01 +
cf15 3.443e+02 7.724e+01 3.443e+02 5.944e+01 = 3.180e+026.749e+01 = 2.040e+022.828e+01 3.800e+02 6.061e+01 -
cf16 1.264e+021.061e+02 1.630e+02 1.388e+02 = 2.327e+02 7.620e+01 - 2.649e+02 1.951e+01 2.202e+024.425e+01 +
cf17 1.629e+021.271e+02 1.943e+02 1.344e+02 = 3.024e+02 5.909e+01 - 2.921e+02 2.843e+01 2.650e+021.144e+01 +
cf18 9.267e+02 1.172e+01 9.278e+02 7.720e+00 = 9.238e+028.560e+00 = 9.121e+02 9.224e-01 9.027e+024.188e+01 +
cf19 9.282e+02 7.646e+00 9.277e+027.849e+00 = 9.229e+029.567e+00 + 9.119e+02 4.105e-01 8.706e+021.271e+02 +
cf20 9.278e+02 9.662e+00 9.291e+02 8.160e+00 = 9.233e+021.250e+01 = 9.120e+02 7.366e-01 8.954e+024.819e+01 +
cf21 9.791e+02 1.317e+02 9.497e+021.747e+02 = 9.909e+02 1.060e+02 = 1.002e+03 1.215e+00 5.000e+020.000e+00 +
cf22 9.329e+02 2.361e+01 9.277e+022.429e+01 = 9.216e+022.083e+01 + 9.037e+023.273e+00 9.495e+02 1.364e+01 -
cf23 9.869e+02 1.088e+02 9.347e+021.765e+02 = 9.951e+02 8.296e+01 = 1.002e+03 1.029e+00 5.000e+020.000e+00 +
cf24 7.521e+02 4.004e+02 6.808e+024.118e+02 + 8.364e+02 3.613e+02 = 1.036e+03 1.759e+00 2.000e+020.000e+00 +
cf25 1.671e+03 8.121e+00 1.669e+036.051e+00 = 1.669e+038.034e+00 = 1.682e+036.184e+00 1.693e+03 4.987e+00 -

Total number of (+/=/-): 3/22/0 4/15/6 19/2/4

rarely occurs, the computational cost amounts to computing
(

NP 2
−2·NP
2

)

distances between individuals. This is due to
the symmetric property of the distance measure.

Strictly speaking, in a pre-specifiedD–dimensional problem
f , let the computational cost of a function evaluation be
equal toc units of real computation time, while the cost of
computing a distance between two individuals bed = κ·c units
of real computational time. Thus, the computational cost per
generation of an original DE strategy is:CostDE = NP · c,
while the worst case scenario for the computational cost of
the corresponding proximity variant yields:CostProDE =
NP ·c+NP 2

−2·NP
2

·κ·c. In a real case, the number of distances
that have to be computed depends on the successful mutations
of the algorithm (selection rate), which in turn depends on
the phase of the evolution process and on the problem at
hand. One can estimate the ratioCostProDE/CostDE to obtain
an estimate of the computational overhead of the proximity
framework.

In this study, we employed the CEC 2005 benchmark func-
tion set. To quantify the overhead of the proximity framework
on these functions we computeCostDE andCostProDE using
the worst case scenario, in which each update of the affinity
matrix involves the computation of all of its elements. The
computed median value of the ratio for the CEC 2005 bench-
marks is approximately1.0834. The nature of the functions in
the CEC 2005 benchmark set is such that the computational
cost of DE algorithms is mostly determined by function
evaluations. In such cases the implementation of the prox-
imity framework is highly recommended, because it can yield
significant improvements in the quality of the solutions, with
a relatively small computational overhead. The overhead is
reversed when the cost of a function evaluation is small relative
to the cost of computing the affinity matrix. To demonstrate
this behavior, we have computed the ratioCostProDE/CostDE

for the functions in the YAO benchmark set [75]. The ratio
is very high, with the median value approximately equal to
9.5351. In such cases, the proximity framework can only be
justified if the improvement in the quality of the solutions is
highly valued by the user.

D. Overall Performance

We conclude the presentation of the experimental results, by
providing a summarizing comparison over all the benchmark
functions. To this end, we utilize the Empirical Cumulative
probability Distribution Function (ECDF ) of the Normalized
Mean Error (NME ).

TheNME measure attempts to capture the relative perfor-
mance of an algorithm against the best performing algorithm
on a particular function. Specifically, for an algorithmA on
a function f is computed as the ratio of the Mean Error
(ME ) achieved byA on functionf , over the lowestME on
f achieved by any of the considered algorithms (denoted as
MEbest):

NMEA,f =
ME

MEbest + ǫ
,

where ǫ = 1 is a small real constant number used to avoid
zero values in the denominator. Therefore, smaller values of
NME correspond to better performance.

TheECDF of NMEs for a number of algorithmsnA and a
number of functionsnf is a cumulative probability distribution
function defined as:

ECDF (x) =
1

nA × nf

nA
∑

i=1

nf
∑

j=1

I(NME i,j 6 x),

whereI(·) is the indicator function. In other words, theECDF

measure captures the empirical probability of observing an
NME value smaller or equal tox.
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Fig. 7. Convergence graph (median curves) for the state-of-the-art DE variants over the 50–dimensionalcf3, cf4, cf9, cf11, cf12 and cf13 CEC 2005
benchmark functions. The horizontal axis illustrates the number of generations, and the vertical axis illustrates themedian of solution error values over 100
independent simulations.

First, we compute theNME for all considered algorithms
over all the functions. We then separate the algorithms into
two sets, the original DE algorithms and the Pro DE variants,
and compute theECDF for each set. This enables a summa-
rizing comparison of the algorithms in the two sets, as larger
values ofECDF for the same argument correspond to better
performance.

Fig. 8 illustrates theECDF of NMEs for all the original

DE mutation operators versus their proximity-based variants
for the CEC 2005 function set. The proximity framework
exhibits a great potential on the CEC 2005 function set.
The proximity DE mutation strategies significantly outperform
the corresponding original DE mutation strategies in most
cases. Despite the fact that the two very exploitative strategies,
DE/current-to-best/1 and DE/best/2 and their Pro DE variants,
yield high mean error values, the Pro DEECDF curve is
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Fig. 8. Empirical cumulative probability distribution of normalized mean
error of all DE algorithms against the corresponding proximity-based frame-
works over the CEC 2005 benchmark functions.

almost always above that of the original DE strategies. In
general, Pro DE mutation strategies produce two orders of
magnitude lessNME than the original DE mutation strate-
gies, i.e. the Pro DE curve reaches unity at approximately
NME ≈ 2, 000 while the DE curve atNME ≈ 900, 000.

Fig. 9 demonstrates theECDF curves ofNME for the
considered state-of-the-art DE variants and their proximity-
based modifications for the CEC 2005 function set. The
ECDF curve of the proximity-based modifications of the
state-of-the-art DE variants, during the initial stages, is below
that of original algorithms’ECDF curve. However, notice
that the proximity-basedECDF curve reaches unity in two
orders of magnitude lessNME than the original state-of-
the-art DE variants. Specifically, the proximity-basedECDF

curve reaches unity at approximatelyNME ≈ 104, while the
state-of-the-art DE variants curve atNME ≈ 106.

VII. C ONCLUDING REMARKS

It has been recognized that during the evolutionary process
of the Differential Evolution (DE) algorithm a clustering
structure of the population of individuals can arise. In this
work, we attempt to take advantage of this characteristic
behavior to improve the performance of the algorithm. To this
end, we substitute the uniformly random selection of parents
during mutation. We propose a probabilistic selection scheme
that assigns probabilities that are inversely proportional to the
distance from the mutated individual. The proposed proximity-
based scheme is generic, as it is independent of the mutation
strategy. In this work we have applied it to the original
DE mutation strategies and a number of state-of-the-art DE
variants.

The experimental results show that the proposed frame-
work improves significantly excessively exploratory mutation
strategies since it promotes the exploitation of some areas
of the search space. For exploitative mutation strategies the
proximity scheme does not lead to great benefits. However,
even for these strategies, the proximity-based framework very
rarely deteriorates their performance. The incorporationof the

Fig. 9. Empirical cumulative probability distribution of normalized mean
error of all state-of-the-art DE variants against the corresponding proximity-
based frameworks over the CEC 2005 benchmark functions.

framework in eight state-of-the-art DE variants with different
dynamics exhibited either substantial performance gains,or
statistically indistinguishable behavior. Moreover, themain
impact of the proposed framework was observed in high
dimensional multimodal functions like the hybrid composition
functions of the CEC 2005 test set. Finally, the self-adaptive
parameter mechanisms of state-of-the-art DE variants are not
inhibited by the incorporation of the proximity framework.

This performance improvement comes at an additional com-
putational cost due to the computation of pairwise distances
between individuals. This cost can be substantial when the
cost of the function evaluation is trivial. In such cases, the
utilization of the proximity framework can only be justified,
if the improvement in the quality of the obtained solutions is
highly valued by the user. On the contrary, when a function
evaluation is computationally or otherwise costly, the compu-
tational overhead is negligible.

The effect of dimensionality and different population sizes
on the performance of the proposed framework is an important
aspect which we intend to study further in future work.
Another interesting aspect which will be considered is the
effect of proximity on structured populations.
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