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Abstract—Differential Evolution is a very popular optimization

Programming [5], Particle Swarm Optimization (PSO) [6]dan

algorithm and considerable research has been devoted to the Differential Evolution [7], [8].

development of efficient search operators. Motivated by the

different manner in which various search operators behavewe
propose a novel framework based on the proximity charactestics
among the individual solutions as they evolve. Our framewdt
incorporates information of neighboring individuals, in an at-
tempt to efficiently guide the evolution of the population tavards
the global optimum, without sacrificing the search capabiliies of
the algorithm. More specifically, the random selection of peents
during mutation is modified, by assigning to each individual
a probability of selection that is inversely proportional to its
distance from the mutated individual. The proposed frame-
work can be applied to any mutation strategy with minimal
changes. In this paper, we incorporate this framework in the
original Differential Evolution algorithm, as well as other recently
proposed Differential Evolution variants. Through an extensive
experimental study, we show that the proposed framework ragts
in enhanced performance for the majority of the benchmark
problems studied.

Index Terms—Differential Evolution,
Affinity Matrix, Nearest Neighbors

Mutation Operator,

|. INTRODUCTION

In general, every EA starts by initializing a population of
candidate solutions (individuals). The quality of eachusioh
is evaluated using a fitness function, which representsribie-p
lem at hand. A selection process is applied at each iteration
of the EA to produce a new set of solutions (population).
The selection process is biased toward the most promising
traits of the current population of solutions to increaseirth
chances of being included in the new population. At each
iteration (generation), the individuals are evolved tlyiow
predefined set of operators, likeutationand recombination
This procedure is repeated until convergence is reachegl. Th
best solution found by this procedure is expected to be & near
optimum solution [2], [9].

Mutation and recombinationare the two most frequently
used operators and are referred toeaslutionaryoperators.
The role of mutationis to modify an individual by small
random changes to generate a new individual [2], [9]. Itstmai
objective is to increase diversity by introducing new génet
material into the population, and thus avoid local optimlae T
recombinationor crossover) operator combines two, or more,
individuals to generate new promising candidate solut[@hs

VOLUTIONARY Algorithms (EAS) are stochastic searc
methods that mimic evolutionary processes encounte

ore new areas of the search space [2], [10
in nature. The common conceptual base of these methods is t b [21, [101

>&BHThe main objective of the recombination operator is to
I
this paper, we study the Differential Evolution (DE)

main processes involved in the evolution of genetic mdtefia

has been successfully applied in a plethora of optimization
organism populations, such as natural selection and hgzbg y app P P

evolution. EAs can be characterized as global optimizatien

gorithms. Their population-based nature, allows them tacav
getting trapped in a local optimum and consequently pravid
a great chance to find global optimal solutions. EAs have bee
successfully applied to a wide range of optimization protse

problems [7], [11]-[19]. Without loss of generality, we gnl
consider minimization problems. In this case, the objectiv
is to locate a global minimizer of a functiofi (objective
ﬁmctlon)

efinition 1: A global minimizerz* € R of the real-
valued functionf: £ — R is defined as:

such as image processing, pattern recognition, scheduling

and engineering design [1], [2]. The most prominent EAs
proposed in the literature are: Genetic Algorithms [1], Ev
lutionary Programming [3], Evolution Strategies [4], G&oe
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Qvhere the compact st C RP is a D—dimensional scaled

translation of the unit hypercube.

A main issue in the application of EAs to a given opti-
mization problem, is to determine the values of the control
parameters of the algorithm that will allow the efficient kxp
ration of the search space, as well as its effective expioita
Exploration enables the identification of regions of therclea
space in which good solutions are located. On the other
hand, exploitation accelerates the convergence to thenapti
solution. Inappropriate choice of the parameter values can
cause the algorithm to become greedy or very explorative and



consequently the search of the optimum can be hindered. Fer expfor exponential andbin for binomial. Exponential and
example, a high mutation rate will result in much of the spad#nomial crossover will be discussed in subsection II-C. In
being explored, but there is also a high probability of Igsinthis study, we always employ binomial crossover, and thus we
promising solutions; the algorithm has difficulty to conyer exclude thecrosspart to simplify the notation.
to an optimum due to insufficient exploitation. Several Evol In DE the central search operator is known rastation
tionary Computation approaches have been proposed thatdimategy Consequently, a substantial amount of research has
to give a satisfactory answer to théxploration/exploitation been devoted to the development and the analysis of efficient
dilemma [20]-[27]. Recent studies of the exploration andnutation operators and their dynamics [12], [13], [15],][18
exploitation capabilities of different mutation operatdrave [35], [36]. In more detail, for each individual undergoing
shown that after a number of iterations of the DE algorithen thmutation (nutated individugl a set of individual solutions
individuals exhibit the tendency to gather around optimgzeare uniformly selected across the populatigarénty. The
of the objective function [21], [22]. parents and the mutated individual are subsequently mixed t
Motivated by these findings, we propose an alternative ¢tmnstruct a new candidate solutiomitant individual. The
the uniform random selection of parents during mutatiomutation operators prescribe the manner in which this ngixin
We advocate a stochastic selection framework in which tige performed, and the number of parents that will be used.
probability of selecting an individual to become a parerithe search operators efficiently shuffle information amdmey t
is inversely proportional to its distance from the indivédiu individuals, enabling the search for an optimum to focus on
undergoing mutation. By favoring search in the vicinity othe most promising regions of the solution space. Next, we
the mutated individual this framework promotes efficient exdescribe in detail the DE procedures.
ploitation, without substantially diminishing the expdion
capabilities of the mutation operator. The proposed fraamkw
can be applied to any mutation strategy and, as shown throdogh
extensive experimental evaluation, produces remarkahle i Following the general concept of EAs, the first step
provement. We also incorporate this framework to a numbef DE is the initialization of a population ofVP, D-
of recently proposed DE variants and observe performardienensional potential solutiondn@ividualg over the opti-

Initialization

gains. mization search space. We shall symbolize each individual
The rest of the paper is organized as follows: Section by T, = [x;_rl,x;_rz,...,x;_p], fori = 1,2,..., NP, where
describes the original Differential Evolution algorithrim ¢ =0,1,..., gmax iS the current generation armghax the max-

Section 1Il, we include a short literature review. Sectian | imum number of generations. At the first generatign=( 0)
illustrates the behavior of different mutation operatgrsy- the population should be sufficiently scaled to cover as much
viding the motivation for the proposed framework, which igs possible of the optimization search space. Initiabzati
presented in Section V. Next, in Section VI we present ttie implemented by using a random number distribution to
results of an extensive experimental analysis, and therpapenerate the potential individuals in the optimizationreka
concludes with a discussion in Section VII. space. The optimization search space can be defined by lower
and upper bound values, i.d. = [Li,Ls,...,Lp|] and

Il. THE DIFFERENTIAL EVOLUTION ALGORITHM U ~ [.Ul’UQ"".’UL.’]' _I—!ence, we can |n.|t|a||ze thg-th

dimension of the-th individual according to:
Differential Evolution [7], [8] is a population—based shacs- .

tic parallel direct search method that utilizes concepts bo 0, = Lj +rand;(0,1) - (U; — L;), 1)
rowe_d from the broad class of EAs. The method typ'calk)(/hererandj(o,l) is a uniformly distributed random number
requires few control parameters and numerous studies h ¥ fined in thel0, 1] range
shown that it has good convergence properties. DE outper- ’ '
forms other well known EAs in a plethora of problems [7],
[11]-[13], [15] and has attracted the interest of the regearB. Mutation Operators
communl_ty. Consequently, several _var|at|o_ns of the ctassi Following initialization, the evolution process beginsthwi
DE algorithm have been pr(_)posed m_th_e literature [13], ’[14t]ne application of the mutation operator. For each indigldu
[22], [23], [26]-[34]. A detailed description of the DE algo 4t ye cyrrent population a new individual, called teitant

rithm and experimental results on hard optimization protse jyividual v | is derived through the combination of randomly

can be found in [12]-[15], [18]. selected and pre-specified individuals. The originallypmsed

The DE algorithmic schemes can be classified using gy most frequently used mutation strategies in the liteeat
notation DEbasénumicross The method of selecting the ..

parent that constitutes the base individual is indicateddse . .
For example, DE/randuncrossselects the parent for the base 1) "DE/best/1
individual randomly, while in DE/bestumcrossthe parent for L= gbest 4 pgmt — g7) )
the base individual is the best individual of the populatibine ‘ ‘ g 97
number of differences between individuals that are used to2) “DE/rand/1”
perturb the base individual is indicated bym Finally, cross ,

stands for the crossover type utilized by the mutation eyt vy = xg + Flag —xg), ®3)



3) “DElcurrent-to-best/1” calledtarget individuals to produce thérial individuals. The
i i s i - - most well known and widely used variants of DE utilize two
vy = Ty + Fag™ — o) + Flagt —a?),  (4) main crossover schemes; tlexponentialand the binomial
4) “DE/best/2” or uniform crossover [7], [12], [13], [46]. The exponential
crossover scheme was introduced in the original work ofrStor
and Price [8], but in the subsequent DE literature the biabmi
5) “DE/rand/2” variant [7], [13] is mostly used.
The binomial or uniform crossover is performed on each
componentj (j = 1,2,..., D) of the mutant individualug.

i best r 7 7 7
vy =2, + Fag —x?) + F(x® —x?), (5)

vy =zt + Fz? —a?) + Fayt —x?),  (6)

6) “DE/current-to-best/2” In detail, for each component of the mutant vector a random
. . , real numberr in the interval[0, 1] is drawn and compared
i i +F(xbest _ IZ) + . : .
Vg = g g g with the crossover rateor recombination factorCR < [0, 1],

+ F(xy —x?) + F(z? —x;*),  (7) which is the second DE control parameterrIf CR, then

we select, as thg—th component of the trial individuat?,
Ghe j—th component of the mutant individua;. Otherwise,
the j—th component of the target vectﬁg becomes the—th
component of the trial vector. The aforementioned procedur
can be outlined as:

where a:‘gmst denotes the best (fittest) individual of th
current generation, the indices,ro,r3,r4,75 € S, =
{1,2,...,NP}\ {i}, are uniformly random integers mutually
different and distinct from the running index(z* — ") is

a difference vector that mutates the base vector,{, € S,),
andF > 0 is areal positive parameter, callatutationor scal- ; v, ;, if (rand ;(0,1) < CR 0Of j = jrand),
ing factor. The mutation factor controls the amplification of the ~ %4,; = i . otherwise (8)
difference between two individuals and is used to preveat th 9.3’

stagnation of the search process. Large values of this @team,yhere the rangd;(0,1) is a uniformly distributed random
amplify the differences and hence promote exploration)evhiy mber in[o, 1]"different for everyj-th component of every
small values favor exploitation. The inappropriate chodde jndividual, andjiang € {1,2,...,D} is a randomly chosen
the mutation factor can therefore cause the deceleratitimeof jnteger which ensures that at least one component of the
algorithm and a reduction of population diversity [12], [15 mytant vector will be assigned to the target vector. It islent
[28]. In the original DE algorithm, the mutation factétis & that for values of the recombination factor close to zero the

fixed and user defined parameter, while in many adaptive Rigect of the mutation operator is very small, since thedarg
variants each individual is associated with a differenfaile 59 the mutant vector become identical.

mutation factor [23], [26]-[31], [33], [37], [38]. Sever&E
variants that either introduce new mutation strategiesew n
self-adaptive techniques to tune the control parameters h@®. Selection
been recently proposed [12], [15], [18], [22], [25]-[2731],
[34], [35], [39]-[44]. A detailed discussion about the cnt
state-of-the-art of DE can be found in a recently publish
survey [13].

Finally, the selection operator is employed to maintain
etge most promising trial individuals in the next generation
and to retain the population size constant over the evalutio
process [12]. The original DE adopts a simple monotone

In an attempt to rationalize the mutation strategies, E)s. ( . .
(7). we observe that Eq. (3) is similar to the crossover eraselectlon scheme. It compares the objective values of thetta
’ 9- PEra i and trial u!, individuals. If the trial individual reduces the

1 I 1 I 9 !
employed by some Genetic Algorithms. Eq. (2) is OIerIVe\(/jalue of the objective function then it is accepted for thetne

from Eq. (3), by substituting the best member of the previous L . L . ) .
SR WA T ey generation; otherwise the target individual is retainedhia

generationy, ™, W'th a ra}ndom |nc_i|V|duach - Eas. (4.)’ (5)’ pulation. Thus, theelectionoperator can be defined as:

(6) and (7) are modifications obtained by the combination 819 '

Egs. (2) and (3). Itis clear that new DE mutation operatons ca _ ui, if flul) < f(z),

be generated using the above ones as building blocks. Such Ty = Z th - ! 9)

examples include the trigonometric mutation operator ,[39] Tg, Otherwise

the recently proposed genetically programmed mutation Opre original DE algorithm (DE/rand/1/bin) is illustrated i

erators [45], or new classes of mutation operators thatngtte Algorithm 1.

to combine the explorative and exploitative capabilitiéshe

original ones [21], [22]. -
. RELATED WORK

C. Crossover or Recombination Operators Darwin was the first to realize that populations may exhibit
Following mutation, thecrossoveror recombinationopera- a spatial structure which can influence the population’sgyn

tor is applied to further increase the diversity of the pagioh. ics. The Evolutionary Computing (EC) literature todayinék

It is important to note that without the crossover operataspatial information in populations and the general conoépt

the original DE algorithm performs poorly on multimodak neighborhood in several domains. In this section, we lriefl

functions [12]. In crossover, the mutant individuals areneo discuss how the neighborhood concept has been utilizectin th

bined with other predetermined members of the populatiozpntext of the Differential Evolution algorithm.



Algorithm 1 Algorithmic scheme for the original Differential djstinct sub-populations (islands) explore in paralle #ntire

Evolution algorithm (DE/rand/1/bin) search space. In biological terms, dEAs resemble distémat-s
Set the generation countgr= 0 isolated populations in which evolution takes place inadepe
I* Inltlallze the population of NP individuals: P, = dently. The migration operator in dEAs controls the excleang
{%7 PR A NP with Ty, {xl_’g,ng’.. xD_,g} for  of individuals between subpopulations. This operator @sfin
i = 1,2,...,NP unlformly in the optimization search the topology, the migration rate, the migration frequerayd
hyper-rectangI¢L, Ul.*l the migration policy [49], [52], [53]. These additional degs
for i =1 to NP do of freedom make dEAs more flexible and capable of tackling

for j=1to D do harder optimization tasks.
x5 = Lj +rand;(0,1) - (U; — Lj) The concept of structured populations has been incorpmbrate
end for . in DE. In [23] and [54], distributed DE variants were preseht
Evaluate individuak which control adaptively the migration and the DE control pa
end for rameters according to a genotype diversity criterion. B],[&
while termination criteria are not satisfietb distributed DE algorithm is proposed that preserves dityeirs
Set the generation countgr= g + 1 the niches in order to solve multimodal optimization profe
for i =1 to NP do In [56] a ring topology distributed DE was proposed with a
[* Mutation step */ migration operator that exchanges best performing indifis!
Select uniformly random integers,r2,73 € S, = and replaces random individuals among neighboring sub-
{1.2,..., NP\ {i} populations. In [57], Apolloni et al. proposed a modified
I* For each target vector, generate the correspondingversion of [56], in which migration is performed through a
mutant vectory using Eq. (3) */ probabilistic criterion. Modifications of [56] presented[b8]—
for j=1to D do [60] utilize a locally connected topology, where each nasle i
v, = :v“ + F( — x;fg) connected td other nodes. The recently proposed Distributed
end for Differential Evolution with Explorative—Exploitative Pa-

I* Crossover step:For each target vectar, generate lation Families (DDE-EEPF) [24] employs sub-populations
the corresponding trial vectar, throughtheB|nom|aI which are grouped into two families: explorative and ex-

Crossoverscheme.*/ ploitative. Explorative subpopulations have constangé sare
Jrand = a uniformly distributed random integerc  arranged according to a ring topology and employ a migration
{1,2,...,D} of best performing individuals. On the other hand, exptoita
for j=1to D do subpopulations have dynamic size, are highly exploitative
wi =] gy 1 (rand;(0,1) < CR Or j = jrand), and aim to quickly detect fittest solutions. Numerical resul
9 zy ;, otherwise show that DDE-EEPF is an efficient and promising distributed
end for DE variant. The Distributed Differential Evolution with &le
/* Selection step*/ factor inheritance mechanism (FACPDE) [61] implements sub
if f( ) f( ¢) then populations arranged in a ring topology. Each sub-popmnati
Tgi1 = Ug is characterized by its own scale factor and migrates the bes
if f(ul) < f(p®) then ‘ individual with its associated scale factor to its neigtor
wEeS‘— Uy andf w5 = f(up) The distribution of the successful scale factors and thesfitt
end if individuals among the subpopulations, enhances the scheme
else _ and its performance substantially.
Tg1 = Ty
end if
end for B. Index neighborhood concepts in Differential Evolution
end while A popular neighborhood structure in EC is the index-

based neighborhood concept, introduced in the PSO algarith

PSO incorporates an index-based neighborhood structure in
A. Neighborhood concepts in structured EAs its population and not real topological-based neighbodsoo

Thus, the neighbors of each potential solution do not necgss

In structured EAs the population is decentralized into sube in the vicinity of its topological region in the search

populations which can interact and may have different evolapace. Recently, the index neighborhood structures of PSO
tionary roles. Two of the most prominent structured EAs ateave also been considered in DE. The Differential Evolution
cellular Evolutionary Algorithms (CEAS) [47] and distrited with Global and Local Neighborhoods (DEGL) [13], [25], [42]
Evolutionary Algorithms (dEAS) [48], [49]. A comprehensiv incorporates concepts of the UPSO algorithm [62], sucheas th
classification and presentation can be found in [50], [5lihdex neighborhoods of each individual, a local and a global
Generally, in cEAs, the sub-populations are created acoprdscheme to facilitate the exploration and the exploitatiédn o
to a neighborhood criterion and thus each sub-populatisn tthe search space, and a convex combination of these schemes
both an explorative and an exploitative role for a differerib balance their effect. The Self-adaptive DE (SDE) [63],
region of the search space. On the other hand, in dEA®s been modified by using a ring neighborhood topology



in [64]. The same authors introduced the Barebones Diffaecelerates DE by enhancing the search capability in the
ential Evolution [65] (BBDE). BBDE employs the concept oheighborhood of the best solution in successive genemation
index neighborhoods in DE and enhances the DE mutatidaditionally, the Scale Factor Local Search DifferentiaioE
scheme by utilizing as a base vector either a randomly chodetion (SFLSDE) [74] is based on the DE/rand/1 mutation
personal best position or a stochastic weighted averageeof strategy and incorporates, within a self-adaptive schewe,
individual’s attractors (e.g. its personal and neighborhbest local search algorithms to efficiently adapt the mutatiaida
positions). This mutation scheme tends to explore the keaduring the evolution. The local searchers aim to detect aeval
space around the corresponding base vector and thus tatexpmlbthe scale factor that corresponds to a refined offsprirdy an
the vicinity of the current position. thus tend to correct “weak” individuals.

IV. THE DYNAMICS OF DE MUTATION STRATEGIES

_In this section, we investigate the impact of DE dynamics,

e. the exploration/exploitation capabilities of the felient
mutation strategies. Our findings suggest that the indi-

uals evolved through some of the original DE mutation

C. Neighborhood concepts in mutation strategies

Numerous DE variants utilize specialized mutation strate
gies to exploit population structure. In [66], five mutatiorn
strategies have been proposed that produce new vectors,

the vicinity of the corresponding base vector. To this end! : . .
the weighted difference between two individuals is used rategies sometimes tend to gather around minimizerseof th

conjunction with an adaptive scaling factor. DE with Pare ]ect|v_e ftur|1ct|o:1. Ihls .mr(])tt)lva!tes .Olér "?‘gp“l’a?h' yvh|ch§1im
Centric Crossover (DEPCX) and DE with Probabilistic parefPProprately Select neighboring individuals tor '”C"‘W’”
Centric Crossover (Pro. DEPCX) [67] are inspired by thd eac.h mutation strategy. The goal is to efflcu?ntly gum_ke th
parent centric crossover operator (PCX) used in GAs [6 volution of the population towards a global optimum, witho

DEPCX utilizes the parent centric approach in the mut acrificing the s_earch capabili_ties_ of the DE_algorithm_.
tion strategy to generate new solution vectors, while Pr The exploration and exploitation capabilities of differen

DEPCX stochastically utilizes the parent centric mutatioﬁE mutation sirategies were studied in [21], [22], where it

operator along with the basic DE mutation operation. Th¥as shown that not all DE search operators have the same

PCX procedure increases the probability of producing n%pactthon tr?g expllotrhatlon/ e>;plcf)f|.te}t|o:1 of ttr;? search tspace
candidate solution vectors in the vicinity of the parenttoex us, the choice of the most efficient mutation operator can

and thus exploits the neighborhood of parent vectors. I [4Qe cumbersome and problem dependent.

and [69], two modified DE variants called DE with Random In general, we can dIStIr?QUISh between mutation oper-
ators that promote exploration and operators that promote

Localization (DERL) and DE with Localization using thef%-xploitation An observation of the equations of the motati
best vector (DELB) were proposed. Both variants incorpora perators (Egs. (2)—(7)), reveals that operators thatjruzate

simple techniques to produce solutions that exhibit a loc SN
search effect around the base vector, with global exptmatit%'e best individual (e.g. D_E/begt/l, DE/best/2, a_nd_D_E:ﬁmr
characteristics at the early stages of the algorithm anaa IOto-best/l) favor exploitation, since the mu_tan_t _|nd|V|t$uare
effect in terms of convergence at later stages of the alyurit strongly attracted arouln(.j the current best !nd|V|duaI.d\that
DE/best/2 usually exhibits better exploration than DEilies
) because it includes one more difference of randomly selecte
D. Neighborhood concepts through local search individuals, which adds one more component of random
Various DE variants attempt to exploit and refine the paariation in each mutation. In contrast, mutation opeatbat
sition of the best individuals, by incorporating a list otéd incorporate either randomly chosen individuals or many dif
search procedures. MDE [70] makes use of the Hooke-Jeef@®nces of randomly chosen individuals (e.g. DE/randfl an
algorithm and a Stochastic Local Searcher adaptively ¢oorE/rand/2) enhance the exploration of the search spaceg sin
nated by a fitness diversity-based measure. The EMDE [16],high degree of random variability affects each mutation.
[17] combines the powerful explorative features of DE with t Again, although DE/current-to-best/2 is based on DE/aufre
exploitative features of three local search algorithmslegp to-best/1 the utilization of a second difference vectotHar
ing different pivot rules and neighborhood generating funpromotes the exploration of the search space [12], [13]]. [15
tions, e.g. Hooke Jeeves Algorithm, a Stochastic Local®gar Next, we investigate the impact of the dynamics of different
and Simulated Annealing. The Super-Fit Memetic Differainti DE mutation strategies on the population. Experimental sim
Evolution (SFMDE) [71] employs PSO, the Nelder-Meadilations indicate that DE mutation strategies tend to ithiste
algorithm and the Rosenbrock algorithm. SFMDE coordinatése individuals of the population in the vicinity of the obfee
the local search algorithms by means of an index that mesasuftenction’s minima. Exploitative strategies rapidly gatiaé the
the quality of the super-fit individual with respect to théndividuals to the basin of attraction of a single minimum,
remaining individuals in the population and a probabiiistiwhereas explorative strategies tend to spread the indilsdu
scheme based on the generalized beta distribution. Nonsound many minima.
and Iba [72] recently proposed a Fittest Individual Refinetme To demonstrate this we employ as a case study the two-
(FIR), a crossover-based local search DE variant to tadgle h dimensional Shekel's Foxholes benchmark function, ithistd
dimensional problems. In [73], FIR is enhanced through ia Fig. 1. This function has twenty four distinct local miram
local search technique which adaptively adjusts the lenfith and one global minimunfi(—32, 32) = 0.998004, in the range
the search, utilizing a hill-climbing heuristic. This appch [—65.536,65.536]% [75].
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Fig. 1. 3-D Plot of the Shekel's Foxholes function
Fig. 2. DE/best/1/bin population after 1, 5, 10, and 20 gati@ns
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We utilize two DE variants with different dynamics; the f o - o o.D
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of DE/best/1 and DE/rand/1 are depicted in Figs. 2 and 3, N :
respectively. The two figures show that both DE/best/1 and” ‘- '_40 T
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population positions. The exploitative character of DEtHe  #

@
causes the individuals to gather rapidly around the basin of* XK 2
attraction of the global minimum, (see Fig. 2). On the other * e o
hand, DE/rand/1, Fig. 3, spreads the individuals over many 2
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minima locations, before gathering them around the global+ -4
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To study theclustering tendencyf different DE mutation
strategies we utilize a statistical test called the Hopkirig. 3. DE/rand/L/bin population after 1, 5, 10, and 20 gatiens
test [76]. Clustering tendency is a well known concept in
the cluster analysis literature that deals with the probt#m
determining the presence or absence of a clustering struc-

twre in a data set [77]. The Hopkins test relies on thvalues ofh indicate the presence of regularly spaced points.

distances between a number of vectors which are randor"§ value around).5 indicates that the vectors of the dataget

placed in the search space, and the vectors of a data aty randomly d|str|but§d over the search space.
X = {z;i=1,2 NP}, which in our case correspond Due to the stochastic nature of H-measure, for every gen-
- 3l - ) )ttt 1

to the individuals of the population. More specifically, lefration in every simulation we calculate the H-measureevalu
Y = {yii = 1,2,...,M},M < NP, with typically 100 times, by considering different random solutions. Tlus

M = NP/10, be a set of vectors that are uniformly distributed9- 4. We illustrate the mean value of the H-measure at each
in the search space. In addition, [& c X be a set of\M generation, obtained from 100 independent simulationghier

randomly chosen vectors frofi. Let d; be the distance of 30-dimensional versions of the Shifted Sphere and Shifted
y; € Y to its closest vector inx, deno]ted byz;, andd; be Griewank functions [78]. Error bars around the mean depict
J ’ J J

the distance betweer; and its nearest neighbor iki; \ {z;}. Fhe stqndard dgviation of th_e H—me.asure. Th(_e Shifteq Sphere
The Hopkins statistic involves theth powers ofd; ands; and is a simple unimodal function, while the Shifted Griewank

is defined as [77]: @s hig_hly muItimodaI._ These benchmarl_<s were chos_en to
investigate the behavior of the DE mutation operators in two
Zj]‘il dé. qualitatively different problems.
h= M gy ML As shown, all mutation strategies exhibit large H-measure
g=173 g=173 values within the first 100 generations, indicative of arstyo

This statistic compares the nearest neighbor distribudfdhe clustering structure, even from these initial stages of the
points in X with that from the points irt”. When the dataset evolution. Also, the relative values of the H-measure fa th
X contains clusters, the distances between nearest neghldifferent strategies indicate an ordering with respecthteirt

in X, are expected to be small on average, andssumes exploitation tendency. DE/best/1 appears to be the most ex-
relatively large values. Therefore, large value# afidicate the ploitative operator, and DE/current-to-best/1 behavedaily.
presence of a clustering structure in the dataset, whildl smighe least exploitative operator is DE/rand/2.
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In this work, we attempt to take advantage of this clustering
behavior. To this end, we modify the way that DE mutatiogection, we describe in detail the proposed method.
strategies choose individuals to form the difference uscto
which are employed to mutate the base vector. More specifi-
cally, to generate a mutant individual, we propose to use ind
viduals in the vicinity of the parent vector that probablgide
in the same cluster, instead of uniformly random individual ~ As shown in the previous section, it is possible to guide the
This has the potential to rapidly exploit the regions of miaj eyolution towards a global optimum without compromising th
and thus accelerate convergence. algorithm’s search capabilities by incorporating infotina

To illustrate this concept, Figs. 5 and 6 show the 5-neardsam neighboring individuals. In this section, we disculs t
neighbors graphs for the DE/best/1 and DE/rand/1 populigtianain concepts behind a Proximity-based Differential Evolu
of the two-dimensional Shekel's Foxholes function, after tion framework (Pro DE). The easiest way to implement the
5, 10, and 20 generations, respectively. As shown, sefectiproposed approach would be to select the indicess, r3
individuals amongst the 5-nearest neighbors to producamhutof the individuals involved in mutation, to correspond to
individuals will achieve our goal of exploiting local infora-  the 3-nearest neighbors of the parent individual, rather than
tion. The occasional connections between individualselesl being random. However, such an approach could result in an
around different local minima, suggest that the exploratiexceedingly exploitative (greedy) algorithm, especiallying
abilities of the algorithm will not be severely hindered. Wehe first steps of the evolution where such a behavior can
further promote exploration by introducing stochastidityo be detrimental. Instead, we propose a stochastic seleofion
the selection mechanism, instead of just using a prespegiri € {1,2,3} in the mutation procedure.
fied number of nearest neighbors. In particular, we assign a_et us consider a population 8fP, D-dimensional individ-
probability of selection to each individual which is invel uals P, = [z}, 22, ..., 2'F']. We calculate the affinity matrix,

g g’ g
proportional to its distance to the parent individual. la titext R, based on real distances between individuals. Thus, the

V. THE PROPOSEDPROXIMITY-BASED MUTATION
FRAMEWORK



Algorithm 2 Pro DE/rand/1: proximity-based mutation algoto pay, or on the characteristics of the DE variant and

rithmic scheme for DE/rand/1 the considered problem, th&, matrix can be calculated
I* Mutation step */ in every or every few generations. It is evident that when
Calculate the probability matrix, based on Eg. (10) the affinity matrix is not calculated in every generation, it
Utilize a roulette wheel to select indice$, 73,75 € Sr = contains errors. Inaccurate information in the affinity rixat
{1,2,...,NP}\ {i} based on probability matrix, may not significantly affect the algorithm’s dynamics, due
I* For each target vector; generate the correspondingg the desired randomness of indices In this paper, we
mutant vector, using Eg. (3) */ propose to update the affinity matrix after each change of an
for J= 1 tTQ D do . - individual's position, which is in essence at every geriemat
v, =, + Fx? — ) Some DE variants incorporate operators that rapidly change
end for the position of many individuals either by the greediness of

the evolution operator, e.g. the mutation strategies Déffbe

DE/current-to-best/1, DE/best/2, or due to an extra operat
Ra(i,j) element of the matrix corresponds to the distandhat influences the evolution dynamics, e.g. the population
between the-th and thej-th individuals: opposition-based DE [40], [41]. In these cases, we must immme
diately transfer this information to the proximity frameskp

0 b, a2l oo [lad 2P ] .. 00 .
. 9’9 A and thus update the affinity matrix in every generation.
|5, 24 0 e g 2yt The proposed proximity-based framework affects only the
Ry — 3,2t [lad, 22 0 [lad, 2zl 7 mutation step, hence it could be directly applied to any

. . ) ) DE mutation strategy. The application of this framework for

: : - : DE/rand/1 is demonstrated in Algorithm 2. We use the naotatio

| g gl N2 gl 0 Pro DE/rand/1 to designate that the proposed proximitgthas
framework is used.

where ||z, y|| is a distance measure between theand y
individuals. In the case of decision variables with differe VI. EXPERIMENTAL RESULTS

search ranges, a scale-invariant distance measure (@g. ﬂ]n this section, we perform an extensive experimental eval-
Mahalanobis distance [77]) needs to be used to avoid an ’ P P

dependence on the scale of the variables. It has been sh {idtion of the proposed framework. We employ the CEC 2005

. . . . %Vérr]]chmark suite which consists of 25 scalable benchmark
that a fixed number of points becomes increasingly “spars

) . L ; Sfunctions [78]. Based on their characteristics, the fuoriof
as the fj|men5|onal|ty |ncreases_[79]. Therefore, in veghhi the CEC 2005 benchmark set can be divided into the following
dimensional problemg-norms, withp < 1 can be used [80].

. ; . . . our classes. Functionsf; — c¢fs are unimodalicfs — ¢
In this paper we use Euclidean distances, since in all tLe ) . f1 - f5_ fo — ch

. . are basic multimodal functionsg;f;3 and cf14 are expanded
considered problems all the variables have equal ranges.

o o . . multimodal functions, andf5 — are hybrid compositions
The affinity matrix is symmetric, due to the symmetric f15—cfas y b

. . of functions with a huge number of local minima. A thorough
property of the distance. Thus, only the upper trlangulat p%lescription of this test set is provided in [78].
ofleI rtleeds to bbeb_::_fllculaie_()j(é Ba_sed r?.nhm@ mﬁm)l(’ Wet To perform a comprehensive evaluation and highlight the
;a culate a pro ? ity ms rlla'l'tp' kl)ntw Ic t;:ﬁ edemtﬁn different aspects of the proposed framework, we divide the
) Té(.l’.é) rlep_rtehsen S atrt”otha‘ tlhl y e¥vheen 0 b'?? jf-th presentation of the experimental results into four sulisest
|‘n viduar with respect to the-th Tow. -1 he probability of ey o incorporate the proposed proximity framework into
i-th individual is inversely proportional to the distancetbé

b ; T ) e the original DE mutation strategies and compare the per-
é'.th mdwﬁual,rl].e. the _|nd|V|duaIk())fl;r_1|¢ r.OWW'th the minum formance of each strategy with its “Pro DE” variant (Sub-
Istance has the maximum probability: section VI-A). Subsequently, we discuss the suitability of
Ral(i, j) (10) the proximity framework for other well-known DE variants
> Raliyg) (Subsection VI-B). In Subsection VI-C the computationadtco
o . of the proposed framework is discussed. Finally, an overall
wherei,j = 1,2,..., NP. Thus, we incorporate a stochasperformance comparison among all the considered appreache
tic selec'uon_ proc_edure, in the form of a S|rr_1ple rqult_attps provided in Subsection VI-D.
wheel selection without replacement [2], to obtain the ¢edi
ri,ry,ry € Sp={1,2,...,NP}\ {i}. . ,
1A%otz;\ble observation is that it is not necessary to repdmte@' The Proximity-based Framework in DE
calculate the probability matrix in every generation. Agsit  In this section we incorporate the proposed proximity-
previously described, the key role of the proximity framekvo based framework in each of the six original DE mutation
is to exploit possible clustering structure of the popolati Strategies. To maintain a reliable and fair comparison we
over the problem’s minima and subsequently incorporate tfnploy parameter settings that are extensively used in the
information in the evolution phase of the algorithm. To thifiterature. In more detail, the parameter settings used are
end, whenever an individual passes the selection opetator i(a) Population sizeNP = 100 [15], [31], [75].
position is altered and the affinity matrix should be updated(b) Mutation factorF' = 0.5 [7], [15], [29], [31].
Depending either on the computational cost we are willing(c) Recombination facto€R = 0.9 [7], [15], [29], [31].



TABLE |
ERROR VALUES OF THE ORIGINALDE MUTATION STRATEGIES AND THEIR CORRESPONDING PROXIMITMBASED VARIANTS OVER THE 30-DIMENSIONAL
CEC 20058ENCHMARK SET

DE/best/1 Pro DE/best/1 DE/rand/1 Pro DE/rand/1 DE/current-to-best/1 | Pro DE/current-to-best/1
cfi Mean St.D. Mean St.D Mean St.D. Mean St.D Mean St.D. Mean St.D
cfi1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q = 1.537e+022.477e+02 | 3.054e+02 2.926e+02 -
cf2 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q = 1.973e+031.338e+03 | 2.137e+03 1.163e+(3 =
cfs | 2.756e+04 1.713e+04 1.493e+041.042e+04 + 5.077e+05 3.724e+083 4.096e+052.338e+05 = 2.689e+062.711e+06 | 3.130e+06 2.395e+06 =
cfa | 2.159e+023.773e+02| 3.092e+02 6.702e+Q2 = 2.410e-02 2.700e-04 1.700e-033.406e-03 + 3.669e+023.578e+02 | 4.871e+02 4.515e+(2 =
cfs | 1.555e+031.081e+03| 2.184e+03 7.268e+Q2 - 1.470e-023.191e-02 | 1.183e+02 1.372e+(2 - 4.603e+039.657e+02| 5.766e+03 1.365e+(03 -
cfe | 1.595e+00 1.973e+0Q 1.435e+001.933e+0Q = 2.255e+001.406e+00 | 3.625e+00 2.985e+(0 - 9.147e+061.154e+07 | 2.884e+07 6.154e+Q7 -
cf7 | 4.764e+03 1.943e+07 4.696e+031.837e-14 + 4.696e+037.709e-03 | 4.696e+03 1.837e-12 - 5.001e+032.009e+02 | 5.242e+03 1.685e+Q2 -
cfs | 2.095e+016.008e-02| 2.101e+01 6.060e-02 - 2.094e+01 4.480e-03 2.094e+01 5.320e-02 = 2.094e+01 5.006e-04 2.093e+016.071e-03 =
cfo | 1.058e+02 2.711e+01 9.199e+012.454e+01 + 1.325e+02 2.453e+01 1.641e+015.282e+0Q + 6.895e+011.639e+01 | 8.097e+01 1.884e+(1 -
cfio| 1.306e+024.933e+01| 1.379e+02 3.634e+(Q1 = 1.822e+02 7.871e+00 3.298e+011.293e+01 + 8.895e+012.839e+01| 1.001le+02 2.865e+(1 -
cfi1| 2.188e+014.143e+00| 2.295e+01 4.283e+00 = 3.903e+01 1.224e+0Q 1.180e+014.040e+0Q + 1.447e+012.950e+00| 1.753e+01 3.331e+(0 -
cfi2| 5.717e+04 5.796e+04 1.250e+031.787e+03 + 2.553e+04 2.188e+04 2.366e+03.147e+03 + 6.172e+04 4.360e+04 2.441e+041.407e+04
cfis| 9.802e+003.429e+00| 1.079e+01 3.937e+Q0= 1.542e+01 8.584e-01] 2.813e+006.075e-01 + 5.306e+00 3.302e+0Q 5.056e+002.991e+0Q =
cfia| 1.217e+016.716e-01| 1.250e+01 6.501e-Q1 - 1.356e+01 1.382e-01] 1.315e+012.160e-01 + 1.194e+01 3.418e-01] 1.172e+013.394e-01 +
cfis| 5.226e+02 8.110e+01 4.493e+029.302e+0] + 2.520e+028.862e+01 | 3.960e+02 5.330e+(1 - 4.339e+028.339e+01 | 4.594e+02 1.039e+Q2 =
cfie| 2.825e+02 1.383e+02 2.476e+021.195e+07 = 2.187e+02 3.637e+0] 5.613e+015.055e+0] + 2.228e+021.639e+02| 2.333e+02 1.672e+(2=
cfi7| 3.199e+02 1.488e+02 2.614e+021.284e+07 = 2.461e+02 5.148e+01] 8.541e+015.296e+0] + 2.346e+02 1.639e+02 2.062e+021.429e+02 =
cfis| 9.292e+023.065e+01| 9.477e+02 3.631e+Q1 - 9.034e+02 4.932e-01 8.824e+024.422e+0] + 9.504e+022.106e+01| 9.609e+02 3.898e+Q1 -
cfig| 9.235e+021.746e+01| 9.394e+02 4.490e+(Q1 - 9.033e+02 2.236e-01 8.975e+022.907e+01 + 9.518e+022.114e+01| 9.661e+02 3.295e+(1 -
cf20| 9.305e+023.041e+01| 9.510e+02 3.363e+Q1 - 9.033e+02 2.022e-01 8.952e+023.211e+01 + 9.411e+022.931e+01| 9.582e+02 4.699e+(1 -
cfo1| 8.314e+02 3.085e+02 6.858e+022.950e+07 = 5.582e+02 1.762e+02 5.000e+020.000e+0Q + 8.315e+022.839e+02| 9.096e+02 2.673e+(2 =
cfa2 | 9.952e+028.255e+01| 1.051e+03 5.977e+Q1 - 8.591e+021.389e+01| 9.031e+02 9.625e+Q0 - 9.777e+024.260e+01| 9.999e+02 3.521e+Q1 -
cfa3| 8.146e+02 3.087e+07 7.263e+022.973e+02 = 5.697e+02 1.907e+02 5.060e+024.243e+01 + 8.596e+022.878e+02 | 8.808e+02 2.743e+(2 =
cfaa| 9.725e+02 2.424e+02 3.463e+023.530e+02 9.785e+02 1.124e+02 2.000e+020.000e+0Q + 5.809e+023.556e+02 | 5.932e+02 3.758e+(2 =
cfas| 1.675e+031.595e+01| 1.713e+03 1.701e+Q1 - 1.649e+03 2.918e+00 1.641e+036.573e+0Q + 1.669e+031.306e+01 | 1.700e+03 1.108e+01 -

Total number of (+/=/-): 6/11/8 16/4/5 2/11/12]

DE/best/2 Pro DE/best/2 DE/rand/2 Pro DE/rand/2 DE/current-to-best/2 | Pro DE/current-to-best/2
cfi Mean St.D. Mean St.D Mean St.D. Mean St.D Mean St.D. Mean St.D
cfi1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 4.075e-01 1.397e-01 0.000e+000.000e+0Q + 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cf2 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 2.789e+03 6.676e+02 1.225e+024.465e+01 + 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cfs | 1.842e+05 9.642e+04 1.245e+057.092e+04 + 3.793e+07 8.031e+08 4.471e+061.323e+06 + 8.594e+04 5.361e+04 5.417e+044.670e+04 +
cfs | 3.477e+02 1.951e+03 2.000e-051.414e-04 + 6.998e+03 1.553e+03 8.728e+023.046e+07 + 0000e+000.000e+00 | 0.000e+000.000e+0Q =
cfs | 4.586e+013.180e+02| 6.732e+01 1.132e+Q2 - 1.611e+034.637e+02 | 2.060e+03 2.780e+0Q2 - 0.000e+000.000e+00| 9.150e-02 6.274e-02 -
cfe 5.582e-011.397e+00| 1.196e+00 1.846e+Q0 = 3.612e+03 1.890e+03 1.960e+018.975e-01 + 1.595e-017.892e-01| 2.392e-01 9.565e-01 =
cfr | 4.609e+031.184e+02| 4.696e+03 6.966e-03 - 4.671e+032.017e+01| 4.811e+03 1.310e+Q1 - 4.695e+035.519e+00| 4.696e+03 1.837e-12 -
cfs | 2.095e+01 4.929e-07 2.094e+015.294e-04 = 2.095e+01 4.303e-04 2.095e+015.467e-03 = 2.095e+01 4.476e-04 2.094e+016.119e-03 =
cfg | 1.725e+02 1.609e+0] 4.493e+011.113e+01 + 2.061e+02 1.248e+01] 1.878e+021.001e+0] + 1.694e+029.850e+00 | 1.724e+02 8.759e+(0 =
cfio| 1.985e+02 1.780e+01 1.306e+026.338e+0] + 2.321e+02 1.113e+01 2.061e+021.149e+01 + 1.898e+021.147e+01| 1.899e+02 8.673e+(00 =
cfi1| 3.231e+01 9.431e+00Q 3.133e+011.200e+01 = 3.967e+01 1.051e+00 3.964e+011.050e+0Q = 3.960e+011.126e+00| 3.964e+01 1.048e+(0 =
cfi2| 1.487e+05 2.571e+03 2.233e+033.439e+03 + 9.199e+05 1.270e+04 2.588e+051.100e+0§ + 4.450e+04 7.800e+04 1.285e+031.542e+03 +
cfis| 1.607e+01 1.464e+0Q 3.856e+001.783e+0Q + 2.360e+01 1.429e+0Q 1.738e+019.139e-01] + 1.584e+01 9.103e-0] 1.534e+018.793e-01 +
cfia| 1.309e+012.856e-01| 1.329e+01 1.842e-Q1 - 1.373e+01 1.527e-01] 1.339e+011.586e-01 + 1.343e+01 1.627e-0] 1.329e+011.253e-01 +
cfis| 4.284e+02 7.646e+01 3.556e+021.130e+02 + 4.220e+02 7.917e+01 4.020e+021.414e+01 = 3.439e+021.107e+02 | 3.790e+02 9.150e+(1 =
cfie| 2.971e+02 9.141e+0] 2.358e+021.330e+02 + 2.793e+02 3.921e+01 2.317e+021.016e+01 + 2.953e+02 9.467e+01 2.633e+027.366e+01 =
cfi7| 3.334e+02 1.004e+02 3.122e+021.191e+07 = 3.068e+02 3.873e+01] 2.565e+021.290e+0] + 3.024e+02 8.764e+01 2.779e+028.574e+0] =
cfis| 9.071e+02 3.466e+0Q 9.004e+023.010e+0] + 9.063e+021.813e-01| 9.096e+02 1.215e+Q0 - 9.055e+02 1.686e+0(Q 8.911e+023.720e+0] =
cfig9| 9.117e+02 2.165e+01 8.985e+023.329e+0] + 9.062e+021.883e-01| 9.096e+02 1.102e+Q0 - 9.054e+02 1.552e+0Q 8.784e+024.699e+0] =
cf20| 9.078e+02 4.287e+00 8.936e+023.825e+0] = 9.062e+022.183e-01 | 9.096e+02 1.019e+QO0 - 9.053e+02 1.561e+00 8.888e+023.918e+01 =
cf21| 1.030e+03 1.833e+07 5.603e+021.218e+02 + 8.957e+02 2.830e+02 5.000e+020.000e+0Q + 9.477e+02 2.542e+02 5.300e+029.091e+01 +
cfa2 | 8.980e+023.467e+01| 9.277e+02 1.944e+Q1 - 8.553e+021.974e+01| 9.459e+02 7.421e+Q0 - 8.754e+022.075e+01| 9.124e+02 1.066e+Q1 -
cfos| 1.025e+03 1.808e+02 5.528e+021.233e+07 + 8.680e+02 2.891e+02 5.000e+020.000e+0Q + 1.004e+03 2.055e+07 5.180e+027.197e+01 +
cf24| 9.185e+02 9.400e+01 2.000e+020.000e+0Q + 9.814e+02 2.377e+01 2.000e+020.000e+0Q + 9.913e+02 1.666e+01 2.000e+020.000e+0Q +
cfas| 1.644e+031.286e+01| 1.659e+03 1.112e+(Q1 - 1.651e+032.052e+00| 1.688e+03 3.247e+Q0 - 1.653e+035.448e+00| 1.672e+03 3.710e+Q0 -

Total number of (+/=/-): 13/7/Y 15/3/7 711414

The population for all DE variants, over all the benchmarkum test between the original mutation strategies and their
functions, was initialized using a uniform random numbesroximity-based variants. The null hypothesis in each igst
distribution with the same random seeds. that the samples compared are independent samples from iden
jcal continuous distributions with equal medians. We mark
ith “+” the cases when the null hypothesis is rejected at the
5% significance level and the proximity-based variant eiib

réu erior performance, with “-” when the null hypothesis is
and 2’ is the best solution achieved aftéd* - D function P P I yp

evaluations [78], wher® is the dimensionality of the problemrejeCted at the same level of significance and the proximity-

at hand. Each algorithm was executed independently 1 6sed variant exhibits inferior performance and with “="emh

: . . . erformance difference is not statistically significakt
times, to obtain an estimate of the mean solution error aﬂ_glE P y si9

. o . .- . the bottom of each table, for each pair, we also show the
its standard deviation. For each pair of original mutatlo&

. - ) tal number of the aforementioned statistical significzages
strategy and its proximity-based variant, we use boldface f +/=/-). Finally, we underline the algorithm that exhibttse
to indicate the best performance in terms of mean soluti '

L — 8st result in each benchmark function.
error. To evaluate the statistical significance of the olesr
performance differences we apply a two-sided Wilcoxon rank

To evaluate the performance of the algorithms we wif
use thesolution error measuredefined asf(z') — f(x*),
where 2* is the global optimum of the benchmark functio



TABLE Il
ERROR VALUES OF THE ORIGINALDE MUTATION STRATEGIES AND THEIR CORRESPONDING PROXIMITMBASED VARIANTS OVER THE 50-DIMENSIONAL
CEC 20058ENCHMARK SET
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DE/best/1 Pro DE/best/1 DE/rand/1 Pro DE/rand/1 DE/current-to-best/1 | Pro DE/current-to-best/1
cfi Mean St.D. Mean St.D Mean St.D. Mean St.D Mean St.D. Mean St.D
cfi1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q = 2.198e+021.792e+02 | 5.241e+02 3.542e+(2 -
cf2 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 3.960e+03 9.307e+02 3.254e+021.093e+07 + 2.136e+031.128e+03| 2.662e+03 1.368e+03 -
cfs | 3.270e+05 1.439e+05 1.440e+057.123e+04 + 5.404e+07 1.310e+07 7.509e+061.766e+06 + 1.089e+076.857e+06 | 1.196e+07 6.456e+06 =
cfa | 3.473e+03 3.649e+03 1.133e+031.312e+03 + 1.180e+04 3.332e+03 2.476e+036.914e+02 + 1.489e+031.068e+03 | 1.532e+03 1.042e+(03=
cfs | 4.674e+03 1.098e+03 4.608e+031.038e+03 = 1.709e+036.938e+02 | 2.192e+03 2.949e+0Q2 - 7.462e+031.326e+03 | 7.982e+03 1.078e+(3 -
cfe 8.771e-011.668e+00| 1.116e+00 1.808e+Q0 = 4.231e+01 1.182e+01 3.855e+011.776e+01 + 1.078e+071.237e+07 | 3.382e+07 3.099e+Q7 -
cf7 | 6.235e+03 1.902e+07 6.195e+034.594e-14 + 6.195e+034.594e-12| 6.199e+03 5.281e-01 - 6.669e+031.795e+02| 6.771e+03 1.407e+Q2 -
cfs | 2.113e+01 3.904e-03 2.113e+013.087e-04 = 2.114e+01 3.330e-04 2.114e+014.345e-03 = 2.113e+01 4.841e-04 2.112e+013.798e-03 =
cfg | 2.091e+02 4.272e+0] 1.951e+023.987e+01 = 3.468e+02 1.199e+01 1.382e+021.366e+01 + 1.406e+022.939e+01 | 1.554e+02 2.977e+01 -
cfio| 2.378e+025.911e+01| 2.617e+02 6.366e+(Q1 = 3.763e+02 1.578e+01 3.529e+021.482e+01 + 1.717e+024.524e+01 | 2.107e+02 4.353e+01 -
cfi1| 4.269e+01 7.379e+0Q 4.210e+015.234e+0Q = 7.264e+01 1.212e+0Q 7.263e+011.614e+0Q = 2.950e+014.451e+00| 3.141e+01 5.123e+Q0 -
cfi2| 2.749e+05 2.925e+03 6.740e+036.345e+03 + 2.049e+06 5.887e+03 9.192e+037.919e+03 + 2.505e+05 1.137e+08 7.933e+043.736e+04
cfis| 2.281e+01 7.498e+0Q 2.107e+017.419e+0Q = 3.296e+01 1.446e+0Q 2.238e+012.494e+0Q + 1.412e+018.942e+00| 1.546e+01 9.144e+(0 =
cfia| 2.179e+01 5.072e-0] 2.108e+017.160e-01 + 2.339e+01 1.486e-01 2.304e+011.389e-01 + 2.186e+01 4.091e-01 2.183e+015.069e-01 =
cfis| 4.990e+02 7.981e+01 4.248e+025.845e+0] + 2.047e+022.819e+01| 4.000e+02 0.000e+d0 - 4.489e+02 5.001e+01 4.298e+024.158e+01 =
cfi6| 2.520e+02 1.058e+02 2.391e+021.044e+07 = 2.715e+02 1.470e+01 2.479e+029.706e+0Q + 1.812e+02 1.157e+07 1.806e+021.001e+03 =
cfi7| 2.616e+029.805e+01| 2.772e+02 1.097e+Q2= 3.049e+02 2.457e+0] 2.735e+021.049e+0] + 1.724e+028.798e+01 | 1.840e+02 1.064e+(2 =
cfis| 9.519e+022.242e+01| 9.958e+02 2.375e+Q1 - 9.151e+02 6.997e-01] 8.928e+024.981e+0] + 9.745e+021.704e+01| 9.930e+02 1.688e+Q1 -
cfig| 9.489e+021.704e+01| 9.903e+02 2.706e+Q1 - 9.154e+02 5.033e-01 8.836e+025.534e+01 + 9.753e+021.585e+01 | 9.914e+02 1.853e+(1 -
cf20| 9.509e+022.111e+01| 9.868e+02 2.346e+(1 - 9.153e+02 5.553e-01 9.001e+024.417e+01 + 9.736e+022.018e+01 | 9.962e+02 1.766e+(1 -
cfo1| 1.042e+03 2.088e+01 6.970e+023.033e+07 + 1.004e+03 1.101e+0Q 5.000e+020.000e+0Q + 7.930e+022.516e+02| 9.818e+02 2.708e+Q2 -
cfa2 | 9.837e+024.562e+01| 1.071e+03 4.943e+Q1 - 9.061e+023.577e+00| 9.586e+02 1.018e+Q1 - 1.020e+033.024e+01 | 1.058e+03 2.456e+(1 -
cf23| 1.005e+03 1.366e+07 6.700e+022.821e+02 + 1.003e+03 1.029e+00 5.000e+020.000e+0Q + 7.381e+022.312e+02 | 8.923e+02 2.823e+(2 -
cf24| 1.103e+037.326e+01| 1.126e+03 3.130e+Q2 - 1.038e+03 1.717e+00 2.000e+020.000e+0Q + 1.022e+033.010e+02 | 1.180e+03 1.258e+0Q2 -
cfas| 1.715e+031.764e+01| 1.777e+03 1.898e+(Q1 - 1.688e+032.591e+00| 1.709e+03 3.603e+Q0 - 1.717e+031.094e+01 | 1.755e+03 1.220e+01 -

Total number of (+/=/-): 3/11/'ﬁ 17/3/5 1/8/16

DE/best/2 Pro DE/best/2 DE/rand/2 Pro DE/rand/2 DE/current-to-best/2 | Pro DE/current-to-best/2
cfi Mean St.D. Mean St.D Mean St.D. Mean St.D Mean St.D. Mean St.D
cfi1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 6.899e+03 8.880e+02 1.217e+023.143e+01 + 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cfa | 6.836e+01 8.537e+01] 5.139e+002.709e+0Q + 9.715e+04 8.252e+03 5.834e+046.223e+03 + 5.934e+02 1.328e+02 1.028e+022.798e+01 +
cfs | 4.328e+06 1.598e+06 2.641e+069.875e+08 + 4.859e+08 6.865e+07 2.687e+084.238e+07 + 1.451e+07 2.936e+06§ 6.597e+061.459e+06 +
cfs | 5.346e+03 6.011e+03 1.523e+038.763e+03 + 1.390e+05 1.502e+04 7.970e+048.841e+03 + 4.268e+03 9.739e+02 2.107e+035.709e+07 +
cfs | 2.746e+03 1.769e+03 2.740e+036.324e+03 = 2.126e+04 1.720e+03 1.785e+049.111e+02 + 1.035e+031.155e+03 | 2.287e+03 5.298e+02 -
cfe | 1.439e+01 1.028e+01 3.434e+002.767e+0Q + 6.040e+08 1.238e+08 4.587e+051.577e+08 + 2.583e+01 1.463e+01 1.622e+011.196e+01 +
cfr | 6.205e+035.419e+01| 6.322e+03 3.314e+Q1 - 6.201e+032.003e+00| 8.391e+03 1.181e+(2 - 6.195e+034.594e-12 | 6.236e+03 6.720e+Q0 -
cfs | 2.114e+01 3.572e-03 2.114e+013.384e-04 = 2.114e+01 3.143e-04 2.113e+014.171e-03 = 2.113e+01 3.968e-04 2.113e+013.402e-03 =
cfg | 3.806e+02 3.573e+0] 2.777e+021.001e+03 + 4.596e+02 1.477e+01] 4.413e+021.935e+0] + 3.653e+021.772e+01| 3.933e+02 1.873e+Q1 -
cfio| 4.223e+02 2.514e+01 4.072e+022.742e+0] + 5.344e+02 1.467e+01 4.671e+021.751e+01 + 3.988e+021.363e+01| 4.067e+02 2.008e+(1 -
cfi1| 7.050e+017.783e+00| 7.286e+01 1.513e+Q0= 7.253e+011.553e+00| 7.287e+01 1.267e+(0= 7.309e+01 1.275e+00Q 7.249e+011.681e+00Q =
cfi2| 3.813e+05 3.877e+03 6.504e+036.901e+03 + 4.879e+06 3.996e+03 2.425e+061.833e+05 + 1.538e+05 2.758e+05 1.147e+051.969e+08 +
cfis| 3.396e+01 2.146e+0Q 3.088e+012.132e+0Q + 2.873e+05 1.109e+03 4.247e+011.876e+0Q + 3.366e+01 1.824e+0Q 3.293e+011.321e+0Q +
cfia| 2.314e+01 2.062e-0] 2.306e+011.928e-01 = 2.360e+01 1.387e-01] 2.318e+011.702e-01 + 2.328e+01 1.458e-01] 2.305e+011.407e-01 +
cfis| 3.927e+02 5.897e+01 2.791e+028.862e+0] + 9.125e+02 1.553e+01 4.453e+022.914e+0Q + 2.760e+028.419e+01| 3.240e+02 1.079e+(2=
cfie| 3.278e+02 4.836e+01 3.120e+024.674e+0] + 3.805e+02 1.884e+01 3.251e+021.166e+01 + 3.225e+02 4.977e+01 3.001e+023.625e+01 =
cfi7| 3.666e+02 5.547e+01 3.562e+025.005e+0] = 4.378e+02 2.531e+01] 3.772e+021.603e+0] + 3.428e+02 4.725e+0] 3.329e+023.840e+0] =
cfis| 9.202e+02 8.482e+0(Q 8.871e+021.268e+07 + 9.412e+026.037e+00| 1.001e+03 6.688e+Q0 - 9.157e+02 1.964e+0(Q 8.088e+022.127e+07 +
cfig9| 9.193e+02 6.276e+0Q 9.172e+023.634e+0] + 9.398e+025.601e+00| 1.000e+03 6.091e+Q0 - 9.156e+02 8.459e-01] 8.610e+021.703e+07 +
cf20| 9.192e+02 6.324e+00Q 8.786e+021.520e+02 + 9.408e+025.730e+00 | 1.000e+03 6.548e+(0 - 9.154e+02 1.449e+00Q 8.687e+021.274e+02 +
cf21| 1.011e+03 3.265e+01 5.240e+028.221e+0] + 1.028e+03 2.190e+00Q 5.307e+027.809e+0Q + 1.005e+03 3.089e+00 5.060e+024.243e+01 +
cfa2 | 9.445e+023.246e+01| 9.878e+02 1.545e+Q1 - 9.253e+021.030e+01| 1.106e+03 1.330e+Q1 - 9.193e+021.592e+01| 9.804e+02 1.410e+Q1 -
cfas| 1.011e+03 3.223e+01 5.000e+020.000e+0Q + 1.028e+03 2.243e+0Q 5.291e+026.513e+00 + 1.007e+03 7.759e+0Q 5.180e+027.197e+01 +
cf24| 1.039e+03 1.774e+01 2.000e+020.000e+0Q + 1.043e+03 7.243e+00 3.313e+023.470e+01 + 1.041e+03 4.154e+00 2.000e+020.000e+0Q +
cf2s| 1.685e+038.853e+00| 1.722e+03 6.387e+QO0 - 1.697e+032.288e+00 | 1.798e+03 5.523e+Q0 - 1.692e+033.666e+00 | 1.732e+03 3.349e+(Q0 -

Total number of (+/=/-): 16/6/3 17/6/2 13/6/6

Table | reports the results on the 30—dimensional versiatgorithm’s performance on the hybrid multimodal functon
of the CEC 2005 benchmark set. We observe that for the
explorative mutation strategies, DE/rand/1 and DE/ranith@
incorporation of the proximity-based framework yieldsrsfg
cant performance, with the best results obtained for DE/MAN

For DE/rand/2, it exhibit bstantial perf [
or ran it exhibits substantial performance Immvprovement(éfg, cfr. cfo. cfra. cfis andefsy) OF an equal per-

ment in most of the unimodal functionsf — cfc) with the formance, while in five hybrid functions the proposed frame-
exception ofcfs;. Furthermore, there are 5 hybrid composi- ork deteriorates performance slighthyf(s — c fao. ¢ f2s and

tion multimodal functions in which the proposed framework’ X . e
deteriorates performance slightlyf(s _szo Efm andc fys). cfa5). DE/current-to-best/1 is not improved by the proximity-

The framework, however, yields a significant improvement it%ased framework. In general, this strategy produces tyesar

e e, Unctons (.o o andef), S77S WIET Al s bl o ocale gova mirors
For DE/current-to-best/2 although the mean error is small-g havior also explains the inability of the roﬁl()_écgéla oa
in most cases the improvement is significant in 7 cases. P y prop pein

this strategy, the proposed framework does not hinder fe 'Mprove 't'. DE/ cur rent-to-bgs_t/l_ IS SO e>.<pl_0|tat.|ve t“.“'a
as difficulty in locating the minimizers. This implies thiat

For the two exploitative strategies, DE/best/1, DE/curren
to-best/1, the proximity-based framework does not yietd-si
ilar performance improvement. DE/best/1 in most of the uni-
modal and multimodal functions exhibits either marginat im
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is highly unlikely for this strategy to produce a local stwe the 30-dimensional version of the CEC 2005 function set.
that could be exploited from the proximity framework. Notdable Il reports the experimental results for the first si€ D
also that this strategy utilizes only two random individutd variants, TDE, ODE, BDE, JDE JADE and SaDE. The results
generate an offspring, whereas the similar and also empilet show that the proximity framework influences substantially
DE/current-to-best/2 strategy uses four. Finally, despite the performance of TDE, JDE and ODE. Specifically, in nine
exploitative character of DE/best/2 the proximity framekvo functions the performance of TDE is not significantly diéfat
enhances its performance in most multimodal and hybrid-funitom that of Pro TDE. In 11 of the 25 functions Pro TDE
tions. The original DE/best/2 exhibits superior performain achieves a significantly better performance. The benefih fro
five cases onlydfs, cf7, cf14, cfo2 @andefo5). It must be noted the proximity framework is evident in the unimodal function
that qualitatively similar results were also obtained fbe t c¢f5, most of the basic multimodal functions, the two expanded
YAO benchmark function set [75], but due to space limitasionfunctions ¢f13 andcf14), and in most of the hybrid compo-
we do not present them here. sition functions {fis — cf20 andcfs4). TDE is significantly
We further evaluate the proposed framework on the 5®etter than Pro TDE in only four functions fi, cfis, cfao,
dimensional version of the CEC 2005 set of benchmaend cfy5). Overall therefore, TDE is substantially enhanced
functions. Higher dimensional problems are typically leartd  through the proximity framework. Note that TDE is based on
solve and a common practice is to employ a larger populati@i/rand/1 and the proximity-based framework has been shown
size. At present we increased the population size to 2@6,substantially improve this strategy.
but we did not attempt to fine tune this parameter to obtainFor the Opposition-based DE, we observe that the proximity
optimal performance. In this set of experiments algorithnfsamework efficiently exploits the population structuredan
terminated after performing00, 000 function evaluations [78]. guides the evolution towards more promising solutions. As
The results summarized in Table Il indicate that the behlavidable Il indicates, Pro ODE outperforms ODE in fourteen
on the 50—dimensional benchmark function set is very similaases and exhibits similar performance in seven functions.
to that on the 30-dimensional benchmark. The main differarticularly, in four out of five unimodal functions Pro ODE
ence is that the improvement of using the proximity-basedoduces lower mean error values. The performance diféeren
approach is now statistically significant in the majority ofs statistically significantir:f; andcfs, while incfs andcfy it
the test functions. Despite the exploitative characterhef tis not. Moreover, in basic multimodal and expanded function
DE/current-to-best/2 strategy its proximity-based medifon Pro ODE performs either as well as ODEf4, cfs, cf19 and
is superior in most of the unimodal, multimodal and hybridf;3) or significantly better (fs, cfo, cfi1,cfi2 and cfi4).
composition functions in this benchmark function set. Oa trOn the other hand, ODE is significantly superior only in
other hand, the proximity framework does not improve thieur test functions {fs, cfis, cfa2, and cfzs). Furthermore,
exploitative operator DE/current-to-best/1 strategyilevthere the proximity framework produces substantial improvement
is a marginal improvement for DE/best/1 in two unimodal anith the optimization of hybrid composition functions which
six multimodal functions. are characterized by a huge number of local minima. Pro
Overall the comparison of each of the original DE mutatio®DE significantly outperforms ODE in seven out of eleven
strategies with its proximity-based variant indicatest tthe hybrid composition functions,cfe, cfi7, cfi9 — cfa1, cfa3,
proposed framework significantly improves the explorativendcfs,). Note that although the population in ODE changes
strategies. Exploitative strategies are not improved wifien rapidly, due to the opposition mechanism, the proximity ap-
original strategy is already too greedy and on some hardyhiglproach efficiently exploits the population structure anitige
multimodal functions. Note however that in relatively fed othe evolution process successfully towards more promising
the latter cases the proximity-based framework detemsratsolutions.

performance significantly. Pro BDE either enhances BDE or performs equally well. In
_ _ _ more detail, BDE is enhanced by the proximity framework in
B. Comparison Against Other DE Variants nine functions (three unimodal and six multimodal), whie t

In this subsection we apply the proximity-based framgserformance of the two is not statistically different in time-
work on eight well known and widely used DE variantsjority of functions (thirteen of the twenty five functionshe
Specifically, we implement the proximity framework on: igth impact of the proximity framework is evident in the expanded
Trigonometric Differential Evolution (TDE) [39], ii) the @ and hybrid composition functions fi3, cf15, cf1s — ¢f20 and
position based Differential Evolution (ODE) [40], [41]i))ithe c¢f22). Moreover, BDE significantly outperforms Pro BDE only
Differential Evolution with Global and Local Neighborho®d in three functionsdfs, cf14 andcfas).

(DEGL) [25], [42], iv) the Balanced Differential Evolution jDE is substantially enhanced by the proximity framework.
(BDE) [22], v) the Self-Adaptive Control Parameters in DEPro jDE exhibits either significantly better or similar per-
algorithm (jDE) [31], vi) the Adaptive Differential Evoligtn formance in 23 of the 25 functions. Only infs and cfas
with optional external archive algorithm (JADE) [18], [26]DE significantly outperforms Pro jDE. More specifically, in
vii) the Differential Evolution algorithm with Strategy Agb- the unimodal functions Pro JDE is significantly betterdy
tation (SaDE) [27], [43], and viii) the Differential Evolion andcf, and exhibits similar performance itf; andcfs. In
Algorithm with Random Localization (DERL) [44]. the basic multimodal functions, Pro jDE generally produces

We evaluate the performance of the eight DE variansnaller or equal mean error to DEf — cf12 except for
and their corresponding proximity-based modificationsrovefy) and a significant enhancementafi, cf19, andcfi1. In



TABLE Il
ERROR VALUES OF THE ORIGINALTDE, ODE, BDE ,JDE, JADE, S\DE ALGORITHMS AND THEIR CORRESPONDING PROXIMITYBASED VARIANTS
OVER THE 30-DIMENSIONAL CEC 20058ENCHMARK SET

TDE Pro TDE ODE Pro ODE BDE Pro BDE

cfi Mean St.D. Mean St.D Mean St.D. Mean St.D Mean St.D. Mean St.D

cf1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 3.970e-02 2.269e-01 0.000e+000.000e+0( 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cf2 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 4.200e-03 1.807e-03 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cfs | 5.003e+052.907e+05| 5.462e+05 2.061e+(05= 3.836e+051.538e+05| 5.639e+05 2.855e+(05 - 4.219e+043.647e+04 | 6.101e+04 2.946e+0Q4 -
cfs | 6.200e-043.149e-03| 3.340e-03 3.008e-03 - 2.314e-02 5.476e-02 1.352e-022.317e-04 = 1.443e+00 1.020e+01 0.000e+000.000e+0Q +
cfs | 1.159e+03 5.486e+02 8.294e+02.541e+02 + 3.889e+02 3.428e+02 1.663e+021.741e+02 + 3.288e+02 3.649e+02 5.469e+001.676e+01 +
cfe | 3.449e+02 2.024e+03 2.942e+011.750e+01 + 1.359e+06 6.516e+06 5.773e+014.148e+01 + 1.834e+00 2.007e+0Q 1.276e+001.879e+0Q =
cf7 | 4.696e+03 1.837e-17 4.696e+03 1.837e-12 = 4.696e+03 1.837e-14 4.696e+03 1.837e-12 = 4.711e+03 9.901e+01 4.623e+031.469e+07 +
cfs | 2.095e+01 4.631e-04 2.094e+015.047e-07 = 2.095e+01 5.900e-04 2.095e+015.184e-03 = 2.093e+015.278e-02 | 2.095e+01 4.741e-02 =
cfg | 1.524e+01 1.117e+01 1.386e+013.761e+0Q = 1.933e+01 7.090e+0Q 1.605e+013.897e+0Q + 5.415e+01 3.564e+01 5.095e+011.720e+01 =
cfio| 1.657e+02 9.457e+0Q 1.642e+029.791e+0Q = 3.737e+011.559e+01| 3.763e+01 1.277e+(Ql= 8.273e+01 6.000e+01 5.573e+012.685e+01 =
cfi1| 3.938e+01 1.149e+0Q 3.844e+012.311e+0Q + 1.739e+01 7.264e+0(Q 7.848e+003.340e+0Q + 2.839e+01 1.077e+01 2.610e+011.158e+0] =
cfi2| 2.819e+04 3.015e+04 4.222e+034.758e+03 + 2.258e+04 2.525e+04 3.071e+032.391e+03 + 4.237e+049.659e+04 | 4.344e+04 6.796e+04 =
cfiz| 1.278e+01 1.747e+0Q 3.730e+002.095e+0Q + 2.953e+00 5.820e-0] 2.903e+006.246e-01 = 6.280e+00 4.015e+0Q 4.523e+003.235e+0Q +
cfia| 1.333e+01 2.021e-01 1.321e+011.943e-01 + 1.326e+01 2.522e-01 1.283e+013.995e-01 + 1.274e+015.181e-01 | 1.297e+01 4.022e-01 -
cfi5| 3.087e+021.012e+02| 3.860e+02 5.718e+Q1 - 3.353e+021.058e+02| 4.201e+02 5.727e+Q1 - 4.086e+02 7.225e+01 3.738e+029.279e+01 +
cfie| 2.261e+02 6.978e+0] 1.744e+028.096e+01 + 9.672e+01 7.248e+0] 5.408e+011.965e+01 + 2.383e+021.574e+02| 2.629e+02 1.751e+Q2=
cfi7| 2.609e+02 8.430e+0] 1.948e+021.212e+01 + 9.586e+01 7.529e+0] 7.417e+014.456e+01 + 2.323e+021.583e+02| 2.436e+02 1.653e+(2 =
cfis| 9.052e+02 1.992e+0Q 8.897e+023.960e+01 + 9.044e+02 9.994e-0] 8.762e+024.800e+01 = 9.128e+02 1.057e+01 9.085e+024.961e+0Q +
cfio| 9.050e+02 1.434e+0Q 8.916e+023.740e+01 + 9.045e+02 8.907e-01] 8.872e+024.131e+01 + 9.167e+02 1.841e+01 9.080e+022.881e+0Q +
cfao| 9.054e+02 1.782e+0Q 8.920e+023.755e+01 + 9.045e+02 1.137e+0Q 8.849e+024.292e+01 + 9.128e+02 7.249e+0Q 9.085e+023.227e+0Q +
cf21| 5.000e+022.622e-01| 5.000e+020.000e+0Q = 5.659e+02 1.822e+07 5.060e+024.243e+01 + 6.761e+022.593e+02| 7.878e+02 2.966e+(2 =
cfao| 8.667e+021.598e+01| 9.055e+02 8.301e+(O - 8.703e+022.011e+01| 9.031e+02 1.054e+(1 - 8.988e+02 2.739e+01] 8.854e+022.141e+0] +
cfas | 5.000e+029.496e-02| 5.000e+020.000e+0Q = 5.825e+02 2.059e+02 5.120e+025.938e+01 + 6.359e+022.517e+02| 7.579e+02 2.874e+Q2 -
cfaq| 4.688e+02 3.784e+02 2.000e+020.000e+0Q + 6.252e+02 3.965e+02 2.000e+020.000e+0Q + 7.420e+023.589e+02| 8.825e+02 2.561e+(2 =
cfas | 1.620e+037.223e+00| 1.637e+03 8.744e+Q0 - 1.631e+031.115e+01| 1.650e+03 7.670e+(0 - 1.636e+031.029e+01 | 1.639e+03 1.025e+(1 =

Total number of (+/=/-): 12/9/4 14/7/4 9/13/3
jDE Pro jDE JADE Pro JADE SaDE Pro SaDE

cfi Mean St.D. Mean St.D Mean St.D. Mean St.D Mean St.D. Mean St.D

cf1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cfa | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cfs | 2.026e+051.062e+05| 3.981e+05 2.102e+(5 - 9.209e+036.153e+03| 1.849e+04 1.437e+Q4 - 2.129e+069.490e+05| 2.280e+06 9.066e+05 =
cfs | 3.440e-03 2.304e-07 1.980e-034.048e-03 + 3.805e+00 1.914e+01 0.000e+000.000e+0Q + 2.000e-05 1.414e-04 2.000e-05 1.414e-04 =
cfs | 6.614e+02 3.056e+02 1.230e+021.151e+02 + 1.963e+02 5.146e+02 5.896e+011.073e+02 + 3.935e+02 2.847e+02 5.505e+011.186e+02 +
cfe | 3.196e+01 2.660e+01 3.352e+002.626e+0Q + 2.669e+01 6.501e+01 1.886e+013.138e+01 = 1.754e+00 1.999e+0Q 1.356e+001.908e+0Q =
cfr | 4.696e+03 1.837e-14 4.696e+03 1.837e-12 = 4.648e+033.002e+01 | 4.696e+03 1.837e-12 - 4.696e+03 1.837e-17 4.696e+03 1.837e-12 =
cfs | 2.095e+01 4.434e-04 2.095e+01 4.420e-02 = 2.095e+01 5.331e-04 2.086e+012.927e-01 = 2.094e+016.041e-02 | 2.095e+01 5.220e-02 =
cfo | 1.540e+013.587e+00| 1.707e+01 4.947e+(0 = 0.000e+000.000e+00| 0.000e+000.000e+0Q = 4.179e-01 1.156e+0Q 0.000e+000.000e+0Q +
cfio| 1.075e+02 6.888e+01 3.578e+011.258e+01 + 6.315e+011.052e+01| 8.180e+01 1.261e+Q1 - 9.844e+019.514e+00| 1.005e+02 3.254e+Q1 -
cfi1| 3.931e+01 1.269e+0Q 1.263e+015.744e+0Q + 2.974e+011.727e+00| 3.009e+01 1.567e+Q0 = 3.204e+013.037e+00| 3.374e+01 1.434e+Q0 -
cfi2| 1.947e+03 1.930e+03 1.849e+031.926e+03 = 2.896e+04 1.125e+04 2.634e+041.160e+04 = 2.322e+03 5.755e+03 1.478e+031.801e+03 =
cfi3| 4.404e+00 3.329e+0Q 2.750e+006.322e-01 = 2.481e+002.885e-01| 3.324e+00 2.646e-01 3.705e+00 2.470e+0Q 2.949e+002.189e+0Q =
cfia| 1.329e+01 1.709e-01 1.313e+012.069e-01 + 1.296e+01 2.398e-01 1.291e+012.298e-01 = 1.295e+012.393e-01 | 1.306e+01 1.949e-01 -
cfis| 3.982e+02 7.427e+01 3.960e+022.828e+01 = 3.042e+021.431e+02| 3.707e+02 1.027e+Q2 - 3.698e+026.718e+01| 3.864e+02 6.377e+(Ql=
cfie| 1.204e+02 8.210e+01 6.048e+015.013e+01 + 1.509e+02 1.264e+02 1.135e+025.004e+01 = 1.248e+02 8.672e+01 6.973e+013.617e+01 +
cfi7| 2.336e+02 6.407e+0] 8.945e+015.773e+01 + 1.872e+02 1.166e+07 1.454e+025.668e+01 = 1.340e+02 4.715e+0] 7.203e+014.306e+01 +
cfis| 8.955e+02 3.579e+0] 8.870e+024.120e+01 + 9.058e+02 1.692e+0Q 8.600e+025.592e+01 = 8.481e+025.721e+01| 8.555e+02 5.610e+Q1 =
cfio| 8.968e+02 3.265e+0] 8.825e+024.428e+01 + 9.053e+02 1.377e+0Q 8.896e+024.534e+01 + 8.787e+02 5.459e+0] 8.668e+025.513e+0] +
cfao| 8.906e+02 4.000e+01 8.824e+024.424e+01 + 9.056e+02 1.503e+0Q 8.959e+023.915e+01 + 8.694e+02 5.746e+01 8.515e+025.638e+01 +
cfa1| 5.240e+02 8.221e+01 5.000e+020.000e+0Q + 5.250e+02 1.080e+02 5.060e+024.243e+01 = 5.317e+02 1.330e+02 5.000e+020.000e+0Q =
cfaa| 9.060e+02 9.828e+0Q 9.008e+029.866e+0Q + 8.723e+022.491e+01| 8.952e+02 2.224e+(1 - 9.138e+02 1.285e+01 9.091e+028.996e+0Q +
cfa3| 5.180e+02 7.197e+0] 5.060e+024.243e+01 = 5.359e+02 1.153e+0Z 5.000e+020.000e+0Q + 5.000e+020.000e+00| 5.000e+020.000e+0Q =
cfaa| 2.000e+020.000e+00| 2.000e+020.000e+0Q = 2.624e+02 2.137e+02 2.000e+020.000e+0Q + 2.000e+020.000e+00| 2.000e+020.000e+0Q =
cfas | 1.634e+031.126e+01| 1.642e+03 7.715e+Q0 - 1.642e+032.921e+00| 1.667e+03 2.929e+(0 - 1.633e+03 6.407e+0Q 1.632e+036.282e+0Q =

Total number of (+/=/-): 13/10/4 6/12/7 7/15/3

cfi2 and cfr — cfy the performance of the two algorithms Pro SaDE demonstrates either similar or significantly bette
is not statistically different. In the next two functionsf(s performance in 22 functionsc (s, cfo, cfi6, ¢f17, cf19, cf20,
andcfi4), Pro JDE exhibits lower mean error and iff;4 the andcfss). As for the previous algorithms, the impact of the
difference is statistically significant. Finally, in most the proximity framework is evident mostly in hybrid composi-
hybrid composition functionscffis — cf25) Pro jDE clearly tion functions. In five of these functions, Pro SaDE attains
outperforms jDE. The only case where jDE appears superiomsstatistically significant performance improvement. SaDE
cfa5. Recall that jDE utilizes the DE/rand/1 mutation strateggignificantly outperforms its proximity variant only in e
which is greatly improved by the proximity framework. functions ¢f10,cf11, and cfi4). The obtained results show

o o that the proximity framework rarely hinders the performanc
Pro JADE exhibits either similar or better performance in - . .
18 out of the 25 functions. Specifically, Pro JADE achiev of the efficient self adaptive algorithms, such as JADE and

o . . &SaDE. Incorporating the proposed framework typically gsel
significantly better performance on two unimodal funCt'onglgorithms V\I/Dith simgilar orr) bgtter performance,ySSpegi;idTye/

(cfs andcfs) and four of the hybrid composition funCt'O.nSfunctmns with a multitude of local minima, like the hybrid
(cf19, cf20, cfa3, and cfo4). JADE outperforms Pro JADE in o .

; composition functions.
seven functions;fs, c¢fr7, cf10, ¢fi3, ¢f15, Cfa2, @ndec fos, Most

of which are multimodal. DEGL is inspired from PSO and incorporates the concept
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TABLE IV

30-DIMENSIONAL CEC 20058ENCHMARK SET

13

DEGL Pro DEGL1 Pro DEGL2 DERL Pro DERL

cfi Mean St.D. Mean St.D) Mean St.D Mean St.D Mean St.D
cf1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = | 0.000e+000.000e+0q = 0.000e+000.000e+0Q 4.700e-03 2.689e-02 =
cf2 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = | 0.000e+000.000e+0Q = 0.000e+000.000e+0Q 0.000e+000.000e+0Q =
cfs | 4.230e+04 3.707e+04 4.203e+04 2.606e+0Q4 = | 3.856e+042.575e+04 = 6.926e+044.492e+04 8.777e+04 5.098e+04 -
cfs | 1.361e+01 4.118e+01 0.000e+000.000e+0Q + | 0.000e+000.000e+0Q + 0.000e+000.000e+0Q 0.000e+000.000e+0Q =
cfs | 5.069e+02 5.803e+02 1.907e+016.182e+01 + | 5.904e+013.957e+02 + 1.731e+022.921e+02 1.579e+03 4.573e+Q2 -
cfe | 1.196e+001.846e+00| 1.196e+001.846e+0Q = | 1.515e+00 1.955e+(0 = 5.928e+021.867e+03 2.568e+06 1.081e+Q7 -
cf7 | 4.696e+03 1.177e+0Q 4.689e+038.806e+0] + | 4.692e+034.524e+01 + 4.696e+033.136e-03 4.696e+03 1.837e-12 =
cfs | 2.095e+01 4.541e-03 2.094e+016.158e-03 = | 2.095e+01 3.346e-02 = 2.095e+014.599e-04 2.102e+01 4.715e-02 -
cfg | 6.477e+01 1.597e+01 3.576e+019.749e+0Q + | 3.801le+011.516e+01 + 2.662e+018.886e+0(Q 4.498e+01 1.442e+Q1 -
cfio| 7.791e+01 2.079e+01 5.182e+011.573e+01 + | 5.473e+014.157e+01 + 6.202e+01 5.406e+01 5.840e+012.172e+01 +
cfi1| 1.785e+013.463e+00| 2.008e+01 7.597e+(0= | 3.085e+01 1.128e+(Q1l - 3.819e+01 5.133e+(0 2.260e+015.892e+0Q +
cfi2| 2.529e+04 3.543e+04 2.351e+042.413e+04 = | 2.233e+044.256e+04 = 3.298e+04 3.605e+04 2.360e+032.489e+03 +
cfiz| 6.179e+00 2.930e+0(Q 3.404e+002.100e+0Q + | 6.743e+00 4.258e+Q0 = 2.931e+001.207e+0Q 4.541e+00 1.509e+Q0 -
cfia| 1.197e+014.399e-01| 1.244e+01 3.270e-01 - 1.280e+01 4.564e-01 - 1.313e+01 2.643e-01 1.289e+014.687e-01 +
cfi15| 4.310e+02 8.986e+01 3.527e+029.868e+01 + | 3.619e+028.926e+01 + 3.063e+029.588e+01 3.842e+02 6.574e+01 -
cfie| 2.703e+02 1.760e+04 1.761e+021.439e+07 + | 1.490e+021.425e+07 + 1.166e+02 1.065e+(2 1.095e+021.070e+03 =
cfi7| 2.000e+02 1.428e+04 1.601e+021.367e+04 + | 2.275e+02 1.511e+Q2= 2.169e+02 1.276e+(02 1.497e+021.353e+07 +
cfis| 9.221e+02 1.696e+0] 9.089e+024.928e+0Q + | 9.083e+024.570e+0Q + 9.064e+02 2.694e+(0 8.982e+024.366e+0] +
cfio| 9.191e+02 1.667e+01 9.099e+026.037e+0Q + | 9.089e+026.152e+0Q + 9.065e+02 3.917e+(0 8.885e+025.047e+01 +
cfao| 9.197e+02 1.875e+01 9.098e+025.907e+0Q + | 9.077e+02.775e+0Q + 9.066e+02 2.320e+(00 9.001e+024.111e+01 +
cfa1| 7.547e+02 2.958e+03 6.794e+022.554e+07 = | 6.633e+022.508e+07 = 6.131e+02 2.233e+(2 5.678e+021.586e+07 =
cfaa| 9.199e+02 3.919e+0] 8.939e+022.596e+01] + | 8.883e+022.518e+0] + 8.741e+022.081e+01 9.204e+02 1.503e+01 -
cfas| 7.494e+02 2.952e+074 6.771e+022.536e+03 = | 6.685e+022.589e+02 = 5.530e+021.645e+02 5.700e+02 1.871e+(Q2 =
cfaa| 6.554€+023.812e+02 | 7.766e+02 3.460e+02= | 6.728e+02 3.864e+(2= 7.284e+02 3.663e+(02 2.000e+020.000e+0Q +
cfas | 1.638e+03 1.150e+01 1.635e+031.103e+01 = | 1.632e+031.120e+01 + 1.622e+036.034e+0Q 1.639e+03 6.131e+Q0 -

Total number of (+/=/-): 13/11/1L 12/11/2 9/7/9

of index neighborhoods [25], [42]. The DEGL algorithnmthan Pro DERL in the unimodal functionsfs and cfs. In
combines a local and a global mutation model to produtiee multimodal functions, Pro DERL significantly outperfcs

the mutant individual. In the local model, which promoteBERL in nine functions, while its performance is signifidgnt
exploration, a neighborhood based on indices is implendent@orse than that of DERL in six functions. The DERL mutation
to select individuals. In the global model, individuals rfro operator is based on DE/rand/1 and utilizes as base vector
the entire population can be selected. Therefore, the mioxi the best of a set of randomly selected individuals. Thus,
framework, and thus the concept of “real” neighborhoods, cintroducing the proximity framework could yield an overly
be incorporated in more than one ways. We denote by Remploitative approach. However, as the experimental tesul
DEGL1 the variant of DEGL in which Pro DE is incorporateghow, the proximity framework does not hinder the dynamics
only in the global model. In this case the global model uses DERL. On the contrary, Pro DERL in most of the functions
as parents the two individuals closer to the current one, eisher enhances DERL by exploiting the resulting popufatio
given by the proximity framework. A second DEGL varianstructure (as in DE/rand/1) or exhibits similar performanc
(Pro DEGL2) is considered in which the proximity frameworkn functions where there are no optimization bounds and the
is incorporated in both the local and global models. In thiglobal optimum is located outside the initialization rar{gey.
variant, four individuals are selected through the prokymicf; andcfs5), the local characteristics of the proximity-based
framework. To retain the intuition of DEGL, the two individ-framework do not appear to enhance performance.

uals closer to the current one are used in the global model, t
promote exploitation, while the other two are utilized ireth
local model, to promote exploration.

rables V-VI summarize the experimental results of all the
DE variants and their corresponding proximity-based modi-
fications on the 50—dimensional versions of the CEC 2005
Table IV summarizes the experimental results for DEGiunction set. As expected, almost all variants exhibit Emi
and DERL on the 30-dimensional version of the CEC 200%&havior with the 30—dimensional versions of the functiet s
function set. Both Pro DEGL1 and Pro DEGL2 significantiyfhe proximity-based framework clearly enhances TDE, ODE,
outperform DEGL in thirteen and twelve cases, respective[lpE and DERL in the majority of functions. As previously,
In more detail, Pro DEGL1 and Pro DEGL2 exhibit similaPro BDE either enhances BDE or performs equally well,
or significantly better performance in all unimodal funaso while Pro SaDE attains an equal performance in most of the
(cf1 — cfs) and in most of the basic multimodal functionsfunctions and only in three cases exhibits a statistically s
In the expanded functions, DEGL outperforms the proximityificant performance improvementfg, c¢fy andcfi7). On the
variants incf14, while in ¢fi;3 Pro DEGL1 is superior and other hand, JADE outperforms the proximity variant in nine
Pro DEGL2 is not statistically different. The main effect ofunctions, most of which are hybrid composition functioReo
the proximity framework is once again observed in the hybri8BADE on the other hand, demonstrates superior performance
composition functions. Pro DEGL1 and Pro DEGL2 exhibinh three multimodal and two hybrid composition functions
better performance in seven hybrid composition function§;fs, cfi1,cfi2, cfi4 andcfar, cfa3, respectively). Pro DEGL1
while their performance is not statistically different ifiro exhibits a statistically significant better performancehnee
DEGL in the remaining four. DERL is significantly bettercasesdfs, cf4 andcf24) and attains similar performance in the



TABLE V
ERROR VALUES OF THE ORIGINALTDE, ODE, BDE ,JDE, JADE, S\DE ALGORITHMS AND THEIR CORRESPONDING PROXIMITYBASED VARIANTS
OVER THE50-DIMENSIONAL CEC 20058ENCHMARK SET

TDE Pro TDE ODE Pro ODE BDE Pro BDE

cfi Mean St.D. Mean St.D Mean St.D. Mean St.D Mean St.D. Mean St.D

cf1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cfa | 5.940e+03 1.444e+03 3.557e+021.047e+03 + 7.460e+03 2.530e+03 5.941e+022.662e+07 + 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cfs | 9.855e+07 1.957e+07 5.295e+061.308e+06 + 8.271e+07 1.869e+07 1.116e+072.407e+06 + 6.150e+05 2.114e+04 5.689e+052.085e+05 =
cfs | 1.513e+04 3.408e+03 2.280e+036.947e+02 + 1.960e+04 3.996e+03 3.989e+031.512e+03 + 1.488e+013.475e+01| 3.547e+01 1.015e+(2 =
cfs | 1.478e+035.389e+02| 2.330e+03 2.324e+(2 - 2.104e+037.673e+02| 2.322e+03 4.177e+Q2 - 1.603e+037.517e+02 | 1.887e+03 8.151e+(2=
cfe | 3.549e+016.305e-01| 3.783e+01 1.624e+(Q1 - 6.609e+012.913e+01| 7.917e+01 3.460e+Q1 - 3.987e-011.208e+00| 1.037e+00 1.767e+(0 -
cfr | 6.195e+034.594e-12 | 6.196e+03 4.036e-02 - 6.195e+034.594e-12| 6.213e+03 2.356e+Q0 - 6.195e+03 1.282e-03 6.194e+036.550e+0Q =
cfs | 2.113e+01 3.215e-04 2.113e+014.420e-07 = 2.114e+01 3.628e-04 2.114e+01 3.377e-02 = 2.114e+01 3.483e-07 2.114e+013.557e-04 =
cfg | 3.348e+02 1.260e+01 1.850e+022.245e+01 + 2.231e+02 2.711e+01 1.767e+021.806e+01 + 2.455e+02 1.099e+02 1.028e+024.449e+01 +
cfio| 3.599e+02 1.226e+01 3.477e+021.316e+01 + 1.331e+021.109e+02 | 1.900e+02 1.322e+(2 - 3.501e+02 1.945e+01 1.484e+021.177e+02 +
cfi1| 7.315e+01 1.217e+0Q 7.273e+011.291e+0Q = 4.370e+01 2.283e+0] 1.154e+013.315e+0Q + 7.278e+01 1.301e+0Q 6.139e+011.966e+0] =
cfi2| 5.022e+05 5.360e+05 1.428e+048.611e+03 + 8.331e+05 7.064e+05 1.126e+048.078e+03 + 1.873e+05 3.140e+05 1.306e+051.905e+08 =
cfia| 3.178e+01 1.524e+0Q 2.657e+011.212e+0Q + 2.348e+01 1.955e+0Q 1.789e+012.686e+0Q + 2.820e+01 2.372e+0Q 9.629e+007.790e+0Q +
cfia| 2.331e+01 1.420e-01 2.296e+011.663e-01 + 2.320e+01 1.884e-01] 2.286e+012.150e-01 + 2.318e+01 2.144e-0] 2.308e+012.586e-01 =
cfi5| 2.000e+022.230e-03 | 3.840e+02 5.481e+Q1 - 2.282e+027.003e+01| 3.880e+02 4.799e+Q1 - 3.254e+026.195e+01| 3.517e+02 7.057e+Q1 -
cfie| 2.724e+02 2.770e+01 2.447e+028.253e+0Q + 1.315e+028.142e+01 | 1.354e+02 9.116e+(1 = 2.890e+02 5.498e+01 1.659e+021.079e+07 +
cfi7| 2.887e+02 2.024e+01 2.685e+021.105e+01 + 1.994e+027.025e+01 | 2.609e+02 4.309e+(1 - 3.127e+02 6.154e+01] 2.425e+021.287e+07 +
cfig| 9.134e+02 1.552e+0Q 8.908e+029.505e+01 + 9.156e+02 5.774e-0] 8.859e+025.414e+01 + 9.215e+025.931e+00| 9.254e+02 8.857e+Q0 -
cfio| 9.133e+02 1.512e+0Q 8.956e+024.831e+01 + 9.156e+02 5.922e-01] 8.813e+025.637e+0] + 9.217e+02 1.165e+01 9.215e+028.476e+0Q =
cfao| 9.129e+02 1.429e+0Q 9.030e+024.199e+01 + 9.157e+02 4.992e-0] 8.907e+025.148e+0] + 9.228e+02 6.646e+0Q 9.223e+025.959e+0Q =
cfz21| 1.002e+03 7.508e-01] 5.000e+020.000e+0Q + 1.005e+03 1.342e+0Q 5.060e+024.243e+01 + 1.008e+033.070e+01 | 1.009e+03 5.803e+(1 -
cfaz| 9.024e+022.782e+00| 9.561e+02 1.176e+Q1 - 9.078e+022.700e+00| 9.637e+02 1.068e+(1 - 9.286e+02 2.880e+01 9.243e+022.344e+0] =
cfa3| 1.002e+03 8.619e-01 5.000e+020.000e+0Q + 1.005e+03 1.214e+0Q 5.000e+020.000e+0Q + 1.013e+03 8.372e+0Q 9.921e+028.810e+01 =
cfaa| 1.036e+03 1.393e+0Q 2.000e+020.000e+0Q + 9.692e+02 2.292e+02 2.000e+020.000e+0Q + 8.690e+02 3.379e+02 8.193e+023.572e+02 +
cfas | 1.684e+033.518e+00| 1.702e+03 4.503e+Q0 - 1.690e+031.776e+00| 1.714e+03 3.084e+(0 - 1.676e+03 1.051e+01 1.674e+031.149e+01 =

Total number of (+/=/-): 16/3/'ﬁ 14/3/8 6/15/4]
jDE Pro jDE JADE Pro JADE SaDE Pro SaDE

cfi Mean St.D. Mean St.D Mean St.D. Mean St.D Mean St.D. Mean St.D

cf1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q = 0.000e+000.000e+00| 0.000e+000.000e+0Q =
cfa | 5.202e+03 1.486e+03 3.205e+021.146e+02 + 0.000e+000.000e+00| 0.000e+000.000e+0Q = 2.280e-03 8.545e-03 7.400e-041.426e-03 +
cfs | 2.977e+07 5.744e+06§ 8.036e+062.123e+06 + 4.436e+04 1.485e+04 4.297e+041.864e+04 = 7.179e+051.007e+06 | 7.824e+05 1.043e+06 =
cfs | 1.654e+04 3.218e+03 2.437e+038.128e+03 + 3.160e-014.134e-01 | 3.186e-01 4.411e-01 = 9.778e+01 9.835e+01 6.641e+015.384e+0] =
cfs | 4.206e+03 5.088e+02 2.225e+033.025e+02 + 1.055e+035.485e+02 | 1.829e+03 4.126e+(02 - 1.992e+03 4.256e+02 1.949e+035.185e+02 =
cfe | 4.178e+018.910e+00| 4.230e+01 2.131e+(1 - 4.692e+001.736e+01 | 1.039e+01 3.460e+Q1 = 1.137e+011.044e+01| 1.148e+01 1.390e+(1=
cfr | 6.311e+03 1.596e+01 6.199e+035.581e-01 + 6.193e+031.840e+00| 6.195e+03 2.840e-02 - 6.195e+03 4.594e-13 6.195e+03 4.594e-12 =
cfs | 2.113e+013.807e-02 | 2.114e+01 3.461le-02 = 2.114e+01 3.251e-04 2.099e+013.929e-01 = 2.113e+01 3.458e-07 2.113e+01 3.974e-02 =
cfg | 3.716e+02 1.409e+0] 1.433e+021.523e+01 + 3.352e+01 2.591e+0Q 2.771e+012.209e+0Q + 6.148e+00 1.266e+01 6.610e-013.443e+0Q +
cfio| 3.843e+02 1.600e+01 3.528e+021.360e+01 + 1.935e+022.060e+01 | 1.992e+02 1.795e+(1 = 6.342e+01 1.287e+01 6.226e+011.204e+01 =
cfi11| 7.330e+01 1.008e+0Q 7.245e+011.500e+0Q + 6.208e+01 1.777e+0Q 6.029e+011.733e+0Q + 6.634e+01 1.485e+0Q 6.613e+012.047e+0Q =
cfi2| 1.473e+05 1.928e+08 9.893e+037.099e+03 + 1.768e+05 7.105e+04 9.446e+045.969e+04 + 8.781e+03 7.092e+03 7.336e+037.223e+03 =
cfiz| 3.260e+01 1.322e+0Q 2.237e+012.333e+0Q + 9.211e+00 4.784e-01 9.142e+005.252e-01 = 8.571e+00 4.416e+0(Q 6.900e+003.452e+0Q =
cfia| 2.309e+01 1.410e-01 2.307e+011.778e-01 = 2.284e+01 2.983e-01] 2.263e+012.552e-01] + 2.284e+01 1.803e-0] 2.281e+011.746e-01 =
cfi5| 4.000e+02 0.000e+0Q 3.960e+022.828e+01 = 2.569e+028.661e+01| 3.800e+02 6.061e+Q1 - 3.881e+024.800e+01| 3.961e+02 2.830e+(1l=
cfie| 2.716e+02 7.979e+0Q 2.485e+029.086e+0Q + 1.437e+024.007e+01 | 1.437e+02 1.738e+(1 - 4.912e+01 1.003e+01 4.846e+018.343e+0Q =
cfi7| 3.059e+02 1.163e+01 2.723e+029.956e+0Q + 1.896e+023.737e+01 | 1.918e+02 3.403e+(1 = 1.241e+02 6.634e+0] 9.361e+015.921e+01 +
cfig| 9.145e+02 3.417e+0] 8.855e+025.390e+01 + 9.206e+022.983e+00| 9.264e+02 4.370e+(1 - 9.041e+025.208e+01| 9.050e+02 5.392e+Q1 =
cfio| 9.141e+02 3.402e+01 8.904e+025.133e+01 + 9.211e+025.326e+00| 9.318e+02 2.823e+(1 - 9.084e+02 4.736e+01 8.973e+029.973e+0] =
cfao| 9.167e+02 2.982e+01 8.876e+029.554e+01 + 9.207e+022.755e+00| 9.325e+02 3.630e+Q1 - 9.152e+02 4.183e+01 9.105e+024.935e+01 =
cfa1| 5.000e+020.000e+00| 5.000e+020.000e+0Q = 8.523e+02 2.330e+02 5.000e+020.000e+0Q + 5.000e+020.000e+00| 5.000e+020.000e+0Q =
cfa2| 9.796e+02 1.055e+01 9.568e+021.117e+01 + 8.987e+029.075e+00| 9.486e+02 1.398e+(1 - 9.608e+02 6.429e+0(Q 9.603e+026.543e+0Q =
cfaz| 5.000e+020.000e+00| 5.000e+020.000e+0Q = 8.103e+02 2.455e+02 5.000e+020.000e+0Q + 5.000e+020.000e+00| 5.060e+02 4.243e+Q1 =
cfaa| 2.000e+020.000e+00| 2.000e+020.000e+0Q = 2.000e+020.000e+00| 2.000e+020.000e+0Q = 2.000e+020.000e+00| 2.000e+020.000e+0Q =
cfas | 1.728e+03 2.883e+0Q 1.709e+032.859e+0Q + 1.684e+032.182e+00| 1.711e+03 4.235e+(0 - 1.687e+033.898e+00 | 1.687e+03 4.170e+(0 =

Total number of (+/=/-): 17/7/1 6/10/9 3/22/0

rest of the function set. Finally, Pro DEGL2 exhibits impedv deteriorates performance.
performance in four functions (the unimodaf,,cfs and

the hybrid compositionsfig, cf22), while DEGL outperforms Computational Cost of the proposed framework

the second proximity-based framework in four multimodal

Several real-world problems implement computer based
simulations that demand resource-intensive evaluatifiseo
objective function, e.g. large-scale finite element analys
Finally, in Fig. 7 we present convergence graphs for six ¢FEA), computational fluid dynamics (CFD), engineering de-
the 50—dimensional CEC 2005 benchmark functions, namedygn problems, or demanding industrial applications [&lich
cfs,cfa, cfo, cfi1, cfi2 andcfi3. The graphs illustrate mediansimulations can be computationally expensive requirirgnfr
solution error value curves for all DE variants considenmed minutes to hours to evaluate a candidate solution.
this section obtained from 100 independent simulations. AsIn the proposed framework, individuals are evolved using
previously mentioned the graphs indicate that in most ctes information contained in the Affinity Matrix. The computa-
proximity-based framework either enhances the convemgerional complexity of the proximity framework depends on the
of a strategy or behaves similarly to it. There are relayivebipdate of this matrix. In the worst case where all individual
few cases where the proximity-based framework signifigantin the current population have been evolved, a situatioh tha

and two hybrid functionsdfio, cf11, ¢f13, cfi4 andefig, cfi7
respectively).
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TABLE VI
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DEGL Pro DEGL1 Pro DEGL2 DERL Pro DERL

cfi Mean St.D. Mean St.D) Mean St.D Mean St.D Mean St.D

cf1 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = | 0.000e+000.000e+0q = 0.000e+000.000e+0Q 0.000e+000.000e+0Q =
cf2 | 0.000e+000.000e+00| 0.000e+000.000e+0Q = | 0.000e+000.000e+0Q = 8.963e+01 3.880e+(1 6.240e+003.064e+0Q +
cfs | 2.311e+05 1.032e+05 1.930e+051.254e+0§ + | 2.779e+05 1.146e+(05= 9.126e+06 2.847e+(6 2.669e+069.487e+0§ +
cfs | 1.574e+00 9.501e+0Q 1.080e-012.747e-01 + 6.760e-032.000e-02 + 1.096e+03 4.822e+(2 2.769e+021.767e+02 +
cfs | 2.093e+03 6.840e+073 2.231e+03 7.426e+(02= | 1.625e+035.690e+02 + 5.091e+025.252e+02 1.413e+03 3.605e+Q2 -
cfe | 1.356e+00 1.908e+0Q 8.771e-011.668e+0Q = | 1.116e+001.808e+0Q = 3.104e+01 2.123e+(01 2.337e+011.838e+01 +
cf7 | 6.195e+03 4.594e-13 6.195e+03 4.594e-12 = | 6.195e+03 4.594e-12 = 6.195e+03 4.594e-12 6.195e+03 1.769e-02 +
cfs | 2.113e+013.917e-02| 2.114e+01 2.969e-02 = | 2.113e+014.002e-04 = 2.114e+01 3.786e-02 2.113e+013.547e-04 =
cfg | 7.620e+011.706e+01| 7.937e+01 2.040e+(Ql= | 1.176e+02 8.655e+(1l = 3.356e+02 1.219e+(1 4.334e+019.757e+0Q +
cfio| 1.031e+02 6.612e+01 9.239e+012.767e+01 = | 2.974e+02 8.587e+(Q1 - 3.655e+02 1.137e+(01 3.174e+026.714e+01 +
cfi1| 6.290e+01 1.360e+0] 6.138e+011.363e+0] = | 6.994e+01 1.013e+(Ql - 7.270e+01 1.510e+(0 7.138e+012.010e+0Q +
cfi2| 5.781e+044.566e+04 | 6.316e+04 6.160e+(4 = | 6.091e+04 8.453e+Q4 = 1.058e+05 1.012e+05 6.119e+036.169e+03 +
cfi3| 6.063e+00 4.361e+0Q 5.413e+001.426e+0Q = | 2.473e+01 5.094e+QO - 3.130e+01 1.342e+(00 4.939e+001.142e+0Q +
cfia| 2.262e+01 3.180e-01 2.255e+013.143e-0] = | 2.296e+01 2.719e-01 - 2.336e+01 1.936e-(J1 2.304e+011.517e-01 +
cfis| 3.443e+02 7.724e+01 3.443e+02 5.944e+(01l= | 3.180e+026.749e+01 = 2.040e+022.828e+01 3.800e+02 6.061e+01 -
cfie| 1.264e+021.061e+02| 1.630e+02 1.388e+(2= | 2.327e+02 7.620e+(Q1l - 2.649e+02 1.951e+(1 2.202e+024.425e+0] +
cfi7| 1.629e+021.271e+02| 1.943e+02 1.344e+(2= | 3.024e+02 5.909e+(Q1 - 2.921e+02 2.843e+(1 2.650e+021.144e+0] +
cfis| 9.267e+02 1.172e+0] 9.278e+02 7.720e+(0 = | 9.238e+028.560e+0Q = 9.121e+02 9.224e-01 9.027e+024.188e+01] +
cfio| 9.282e+02 7.646e+0(Q 9.277e+027.849e+0Q = | 9.229e+029.567e+0Q + 9.119e+02 4.105e-(J1 8.706e+021.271e+023 +
cfa0| 9.278e+02 9.662e+0(Q 9.291e+02 8.160e+dJ0= | 9.233e+021.250e+01 = 9.120e+02 7.366e-(1 8.954e+024.819e+01 +
cf21| 9.791e+02 1.317e+03 9.497e+021.747e+07 = | 9.909e+02 1.060e+Q2 = 1.002e+03 1.215e+00 5.000e+020.000e+0q +
cfaa| 9.329e+02 2.361e+0] 9.277e+022.429e+01] = | 9.216e+022.083e+0] + 9.037e+023.273e+0(Q 9.495e+02 1.364e+Q1 -
cfaz| 9.869e+02 1.088e+04 9.347e+021.765e+03 = | 9.951e+02 8.296e+(l = 1.002e+03 1.029e+00 5.000e+020.000e+0Q +
cfaa| 7.521e+02 4.004e+027 6.808e+024.118e+03 + | 8.364e+02 3.613e+(2 = 1.036e+03 1.759e+(0 2.000e+020.000e+0Q +
cfas | 1.671e+03 8.121e+0(Q 1.669e+036.051e+0Q = | 1.669e+038.034e+0Q = 1.682e+036.184e+0Q 1.693e+03 4.987e+Q0 -

Total number of (+/=/-): 31221 4/15/6 19/2/4

rarely occurs, the computational cost amounts to computifay the functions in the YAO benchmark set [75]. The ratio
NP®_2NP) distances between individuals. This is due i very high, with the median value approximately equal to
the symmetric property of the distance measure. 9.5351. In such cases, the proximity framework can only be

Strictly speaking, in a pre-specifido-dimensional problem ju_stified if the improvement in the quality of the solutiorss i
7, let the computational cost of a function evaluation bIghly valued by the user.
equal toc units of real computation time, while the cost of
computing a distance between two individualsibe x-c units D. Overall Performance

of real computational time. Thus, the computational cost pe \ye conclude the presentation of the experimental resuits, b
ger_leratlon of an original DE_strategy Sostpe :_NP " providing a summarizing comparison over all the benchmark
while the worst case scenario fo.r the f:omputanonal cost Rfnctions. To this end, we utilize the Empirical Cumulative
the corg&ggogglgg proximity variant yieldostprope probability Distribution Function §CDF) of the Normalized
NP-c+=—====r-c. In areal case, the number of distance§oan Error (VME).

that have to .be compute_d depends on the_ successful mutationg, o y1/E2 measure attempts to capture the relative perfor-
of the algorithm (select|9n rate), which in turn depends Fance of an algorithm against the best performing algorithm
the phase of the evolution process and on the problem @t 5 particular function. Specifically, for an algoriths on
hand. One can estimate the ratiostp,onr/Costpr t0 0btain - 5 fynction f is computed as the ratio of the Mean Error

an estimate of the computational overhead of the proximiEX/[E) achieved byA on function f, over the lowestV/E on
framework. f achieved by any of the considered algorithms (denoted as

In this study, we employed the CEC 2005 benchmark fungzp,  ):
tion set. To quantify the overhead of the proximity framekvor
on these functions we comput®stpr and Costp,,pr USINg

the worst case scenario, in which each update of the affin{l%

o . X eree
matrix involves the computation of all of its elements. The
computed median value of the ratio for the CEC 2005 bench-
marks is approximately.0834. The nature of the functions in

the CEC 2005 benchmark set is such that the computational

cost of DE algorithms is mostly determined by functio

evaluations. In such cases the implementation of the prox-

imity framework is highly recommended, because it can yield
significant improvements in the quality of the solutionsthwi

a relatively small computational overhead. The overhead is
reversed when the cost of a function evaluation is smaltivela where(-) is the indicator function. In other words, t#&DF

to the cost of computing the affinity matrix. To demonstratmeasure captures the empirical probability of observing an
this behavior, we have computed the ratiostp,opr/Costpr

ECDF (z) =

NME 4 5 =

1
na Xny

ME
MEbcst + € ’

ME correspond to better performance.
The ECDF of NMFEs

na Nnf

i=1 j=1

NME value smaller or equal to.

> > I(NME; ; < x),

= 1 is a small real constant number used to avoid
ero values in the denominator. Therefore, smaller valdes o

for a number of algorithma 4 and a
number of functions ¢ is a cumulative probability distribution
"unction defined as:
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Fig. 7. Convergence graph (median curves) for the stathesrt DE variants over the 50-dimensiongh, cf4, cfo, cf11,cfi2 and cfi3 CEC 2005
benchmark functions. The horizontal axis illustrates thenber of generations, and the vertical axis illustratesntieglian of solution error values over 100
independent simulations.

First, we compute théVME for all considered algorithms DE mutation operators versus their proximity-based vasian
over all the functions. We then separate the algorithms intor the CEC 2005 function set. The proximity framework
two sets, the original DE algorithms and the Pro DE variantsxhibits a great potential on the CEC 2005 function set.
and compute théCDF for each set. This enables a summaFhe proximity DE mutation strategies significantly outmenf
rizing comparison of the algorithms in the two sets, as largthe corresponding original DE mutation strategies in most
values of ECDF for the same argument correspond to bett@ases. Despite the fact that the two very exploitative esgiat,
performance. DE/current-to-best/1 and DE/best/2 and their Pro DE vésijan

yield high mean error values, the Pro DECDF curve is

Fig. 8 illustrates theECDF of NMFEs for all the original
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Fig. 8. Empirical cumulative probability distribution oformalized mean Fig. 9. Empirical cumulative probability distribution oformalized mean
error of all DE algorithms against the corresponding pratirhased frame- error of all state-of-the-art DE variants against the cgaading proximity-
works over the CEC 2005 benchmark functions. based frameworks over the CEC 2005 benchmark functions.

almost always above that of the original DE strategies. fr@mework in eight state-of-the-art DE variants with diéfat
general, Pro DE mutation strategies produce two orders @fhamics exhibited either substantial performance gans,
magnitude lessVME than the original DE mutation strate-statistically indistinguishable behavior. Moreover, theain
gies, i.e. the Pro DE curve reaches unity at approximatdfppact of the proposed framework was observed in high
NME = 2,000 while the DE curve atVME ~ 900, 000. dimensional multimodal functions like the hybrid compimsit

F|g 9 demonstrates th& CDF curves of NME for the functions of the CEC 2005 test set. Fina”y, the Self—adﬁ&pti
considered state-of-the-art DE variants and their prayimi Parameter mechanisms of state-of-the-art DE variants @ire n
based modifications for the CEC 2005 function set. THghibited by the incorporation of the proximity framework.
ECDF curve of the proximity-based modifications of the This performance improvement comes at an additional com-
state-of-the-art DE variants, during the initial stagespélow Putational cost due to the computation of pairwise distance
that of original algorithms’ECDF curve. However, notice Petween individuals. This cost can be substantial when the
that the proximity-basedCDF curve reaches unity in two cost of the function evaluation is trivial. In such cases th
orders of magnitude les&/ME than the original state-of- Utilization of the proximity framework can only be justified
the-art DE variants. Specifically, the proximity-base@pr  if the improvement in the quality of the obtained solutioss i
curve reaches unity at approximate§ME ~ 104, while the highly valued by the user. On the contrary, when a function

state-of-the-art DE variants curve AV E ~ 106. evaluation is computationally or otherwise costly, the pom
tational overhead is negligible.

The effect of dimensionality and different population size
on the performance of the proposed framework is an important
It has been recognized that during the evolutionary processpect which we intend to study further in future work.
of the Differential Evolution (DE) algorithm a clusteringAnother interesting aspect which will be considered is the

structure of the population of individuals can arise. Insthieffect of proximity on structured populations.

work, we attempt to take advantage of this characteristic

behavior to improve the performance of the algorithm. Ts thi ACKNOWLEDGMENT
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