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Abstract. Several Differential Evolution variants with modified search
dynamics have been recently proposed, to improve the performance of the
method. This work borrows ideas from adaptive filter theory to develop
an “online” algorithmic adaptation framework. The proposed framework
is based on tracking the parameters of a multinomial distribution to re-
flect changes in the evolutionary process. As such, we design a multino-
mial distribution tracker to capture the successful evolution movements
of three Differential Evolution algorithms, in an attempt to aggregate
their characteristics and their search dynamics. Experimental results on
ten benchmark functions and comparisons with five state-of-the-art al-
gorithms indicate that the proposed framework is competitive and very
promising.
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1 Introduction

The Differential Evolution (DE) algorithm is a population–based stochastic di-
rect search method that utilizes concepts borrowed from the broad class of Evo-
lutionary Algorithms. Several variants of the original DE algorithm have been
recently proposed [1–4, 9–12, 14]. Nevertheless, a relatively small number of DE
variants have exhibited substantial performance gains in a large number of real-
world applications, and hence few variants have attracted the attention of the
Evolutionary Computing research community. These variants successfully ex-
ploit different aspects of the DE algorithm, either by utilizing novel mutation
strategies that exploit DE’s exploratory/exploitative search power, or by incor-
porating adaptive schemes to capture the structure of the benchmark function
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at hand. Representative examples of the former type include specialized muta-
tion strategies [9], index neighborhood-based mutations [2], or proximity mu-
tations [4]. Variants of the latter type include schemes such as parameter and
strategy adaptation schemes [1, 5, 10, 14].

In this study, we borrow ideas from adaptive filter theory to develop an
“online” algorithm adaptation technique and incorporate it in the Differential
Evolution algorithm. The proposed framework uses three DE variants, namely
JADE [14], jDE [1], and DEGL [2] algorithms. It allows each individual to ran-
domly select amongst them to evolve at each time step. The probability of se-
lecting each variant depends on its history of improving the population at each
time step and thus guiding it to promising search regions. Extensive experimen-
tal results on 10 benchmark functions demonstrate that the proposed framework
is very promising.

The rest of the paper is organized as follows: Section 2 briefly describes the
multinomial distribution tracker along with its main characteristics. Its incor-
poration into the DE algorithm as a new algorithm adaptation framework is
briefly described in Section 3. The paper ends with an experimental analysis of
the proposed framework, a discussion and some pointers for future work.

2 Multinomial Distribution Tracking through exponential

forgetting

This section briefly presents the multinomial distribution and its extension to
include exponential forgetting. In the multinomial distribution each trial results
in one out of a fixed and finite number K of possible outcomes, with probabili-
ties θ1, θ2, . . . , θK and N independent trials. The number of times outcome i was
observed over the N trials, is represented by a random variable Xi. Thereby, the
vector X = (X1, X2, . . . , XK) follows a multinomial distribution with parame-
ters N, θ, where θ = (θ1, θ2, . . . , θK) and probabilities: P (X1 = x1, . . . , XK =

xK |θ,N) = (N !)/(
∏K

i=1 xi!)
∏K

i=1 θ
xi

i . Based on a data sampleD we can estimate

the parameter θ̂ = θ(D) of a multinomial distribution through the Maximum
Likelihood Estimation (MLE) procedure. Given a data sample D, the likelihood
function can be defined as: L(θ;D) = p(D|θ) = p(x1, x2, . . . , xK |θ). The MLE
estimator of the θ parameter can be easily calculated by applying Lagrange
multipliers in the log-likelihood function. Therefore the MLE of the multino-
mial distribution can be obtained by the following form: θ̂ ML

i = mk/N, where

mk =
∑K

i=1 xi.
We make the assumption that the impact of each observation should be

related to the time of observation. This is reasonable since the optimization pro-
cedure frequently changes phases through evolution. More recent information
about the evolution phase is expected to be more relevant to the optimization
procedure while earlier information should be gradually disregarded. In the cur-
rent study, we develop a tracking framework that is based on the Recursive Least
Squares (RLS) adaptive filter [7, 8]. To this end, we incorporate weights to the
likelihood function and adopt the framework proposed in [8]. Given that a data
sample appears as a signal or a data stream in time, D = {D1, D2, . . . , Dt, . . .},



where t denotes the current time step. We incorporate an exponential weight-
ing factor in the log-likelihood function and produce a new likelihood which
incorporates time, Lλ(θ|D1, D2, . . . , Dt). As in the RLS filter, the new likeli-
hood can be defined as: Lλ(θ|D1, D2, . . . , Dt) =

∑t

j=1 λ
t−jL(θ|D1, . . . , Dj) =

L(θ|Dt)+λL(θ|D1, . . . , Dt−1), where λ ∈ [0, 1] is a weighting factor which is also
called the forgetting factor . The forgetting factor decreases the impact of past
observations on the log-likelihood and thus the estimated parameters are able to
adapt to changes. All data examples are assigned equal weights as λ increases to
unity, while as λ decreases more recent data samples become more important.

Through the application of Lagrangemultipliers we can obtain the MLE θ̂ MLλ

i

according to the following equation:

θ̂
MLλ

i
(t) =

ni(t)∑
K

k=1
nk(t)

. (1)

where ni(t) represents the effective window width which can be recursively cal-
culated through the following equation:

ni(t) = λni(t− 1) +D
i

t, (2)

for t = 1, 2, . . . and ni(0) = 0, where Di
t denotes the number of successes of

outcome i at time t. If λ = 1 the aforementioned framework corresponds to
the simple case of the θ̂ ML

i MLE. Through this framework we can track the
parameters of a multinomial distribution with the potential of forgetting the
history of past observations in an exponential manner.

3 The Multinomial distribution-based Differential

Evolution framework

In this section, we discuss the main concepts behind the proposed framework,
namely the Multinomial distribution-based Differential Evolution (MultiDE).
The proposed framework is based on the Differential Evolution algorithm (DE)
[12]. DE is a population–based stochastic optimization method, which utilizes
concepts borrowed from the broad class of Evolutionary Algorithms. For an op-
timization problem at hand defined in the real D–dimensional space R

D, DE
starts by initializing randomly a population of NP , potential solutions (individ-
uals) in the optimization domain following a uniform probability distribution.
The population is subsequently updated at each iteration, called generation,
by means of three main evolutionary search operations, namely the mutation,
recombination, and selection operators. The search operators efficiently shuffle
information among the individuals, enabling the search for an optimum to focus
on the most promising regions of the solution space. A thorough description of
the DE algorithm can be found in [3, 4, 9, 12]

The proposed framework introduces two main concepts different from the
standard DE. Initially, it probabilistically assigns to each individual one DE
variant, chosen from a pool of K candidate algorithms. Subsequently, based
on the individuals’ movements, it adapts this probability over the evolutionary



Algorithm 1 The MultiDE algorithmic scheme
1: Initialize individuals of the population

2: Initialize the multinomial distribution tracker, for each algorithm i : ni(t0) = 0, θ̂
ML

λ

i
(t0) = 1

K
.

3: for each time step t do
4: for each individual j in the population do

5: Sample kstr from the multinomial distribution with parameters θ̂
ML

λ

i
(t).

6: Apply the mutation operator using algorithm kstr , kstr ∈ {1) JADE, 2) jDE,
3) DEGL}.

7: Apply the binomial crossover operator
8: Apply the selection operator
9: end for
10: Update the score of the kstr strategy through Eq. (3)
11: Update the multinomial distribution tracker through Eqs. (1)–(2)
12: end for

stages through the aforementioned multinomial distribution tracker. The remain-
ing steps of the DE algorithm remain the same. In the current study we utilize
a pool of K = 3 state-of-the-art DE variants that have efficiently tackled several
real or artificial problem landscapes, namely the JADE [14], the jDE [1], and the
DEGL [2] algorithms. Obviously any DE variant could be incorporated into the
pool to enhance the exploratory and exploitative power of the proposed frame-
work. Subsequently, one of the available algorithms is assigned to each individual
based on a probability. This probability is adapted at each generation through
the multinomial distribution tracker, based on the relative fitness improvement
of each algorithm [5].

Specifically, let us assume that the ith algorithm i ∈ {1, 2, . . . ,K}, will evolve

NPi individuals, with
∑K

i=1 NPi = NP. For each individual j, j ∈ {1, 2, . . . , NPi}
we assign a score based on its relative fitness improvement during the last gener-
ation according to wj = fbest|f

i
parent − f i

offspring|/f
i
offspring, where fbest is the

fitness of the best individual, f i
parent is the fitness of the ith individual before

the evolution phase, while f i
offspring is its fitness after the evolution phase [5].

The final score, Score(i), of each algorithm can be calculated according to the
following formula:

Score(i) = round

(
100K

W(i)
∑

K

i=1
W(i)

)
, (3)

where W(i) = wmin +
∑NPi

j=1 wj , wmin = 0.01 is a small constant that prevents
the extinction of an algorithm, in the case where the ith algorithm has not
been selected in the previous generation. The rounding procedure as well as
the multiplication by 100K will fix the score to the required integer value, by
the multinomial distribution. The final score assists the algorithm which pro-
duces the higher relative fitness improvement in the last generation. Thereby,
the multinomial distribution tracker learns from the current evolution stage and
promotes the algorithm that is more likely to efficiently evolve the population
to promising search regions. Having calculated the final scores, we estimate the
probabilities of each algorithm by calculating the aforementioned maximum like-
lihood estimator θ̂ MLλ

i , given by Eqs. (1) and (2). The main algorithmic scheme
of the proposed framework is briefly demonstrated in Algorithm 1.



4 Experimental results

In this section we perform an experimental evaluation of the proposed approach.
We employ ten high dimensional and scalable benchmark functions with differ-
ent characteristics. The first six functions have been acquired from the recently
CEC’2008 Special Session on Large Scale Global Optimization [13]. The remain-
ing four test functions are hybrid composition functions, proposed recently in [6],
and correspond to the f16 − f19 functions of the suite. A detailed description of
the benchmark functions can be found in [6, 13]. To demonstrate the efficiency
of the proposed framework, we compare it with five state-of-the-art DE vari-
ants, namely the DEGL [2], the JADE [14], the jDE [1], the ODE [11], and the
SADE [10] variant.

Throughout the experimental results section, all methods have been imple-
mented with the default parameters settings as have been proposed in the liter-
ature. The population size has been kept fixed to NP = 100 individuals and for
each simulation, a budget of maxNFEs = 5000 ·D function evaluations has been
employed [13]. Here we utilize the 50–dimensional versions of the aforementioned
function set. To evaluate the performance of the considered algorithms we will
use the solution error measure, or simply error [4]. Each algorithm was exe-
cuted independently 50 times to obtain an estimation of the median (Median),
the mean solution error (Mean), and its standard deviation (St.D.). Moreover
to evaluate the statistical significance of the observed performance differences,
we apply two-sided Wilcoxon rank sum tests between the proposed DE variants
and the other DE variants. Here we have implemented three different forgetting
factor values, λ ∈ {0.91, 0.99, 1}. The first two values force to forget the history
of the strategy probabilities with either a fast or a slow rate, respectively, i.e. a
sliding window size of w ≈ 11.1, or w ≈ 100 generations respectively. The sliding
window can be approximated using the λ parameter, through: w ≈ 1/(1−λ) [7].

Tables 1 and 2 report the experimental results on the 50–dimensional ver-
sions of the considered benchmark set. It can be clearly observed that the synergy
of DE variants through the multinomial distribution tracker may result to an
enhanced DE scheme, with a lot of potential. In general, for the majority of
the considered functions, MultiDE exhibits either a significant performance en-
hancement, or an equally good performance in comparison to the other five DE
variants. Only in three functions the proposed framework exhibits inferior perfor-
mance in terms of median error values (f2, f3 and f5). Substantial performance
gains are mainly exhibited in the most challenging functions of the test suite, i.e.
the hybrid composition functions (f6 − f10) and f4. In these cases the proposed
approaches significantly outperform all other DE variants. Comparing the non-
forgetting, (MultiDEλ=1.00), against the forgetting variants (MultiDEλ=0.91 and
MultiDEλ=0.99), we can observe that in the majority of cases there is no signif-
icant performance difference. Only in f8 and f9 the forgetting variants exhibit
significantly better behavior. However, in most cases the non-forgetting variants
produce lower median and mean error values.

Generally, we have observed that the adaptation of the strategy probabili-
ties behave differently based on the benchmark problem at hand as well as the



Table 1. Error values of the proposed DE framework, MultiDE, and five state-of-the-
art DE variants on the first five 50–dimensional versions of the considered benchmark
set (f1–f5).

Algorithm Median Mean St.D. NFE Success St. Sig.
f1 : Shifted Sphere Function

DEGL 0.000e+00 0.000e+00 0.000e+00 3.230e+04 100.0 (=/=/=)
JADE 0.000e+00 0.000e+00 0.000e+00 4.363e+04 100.0 (=/=/=)

jDE 0.000e+00 0.000e+00 0.000e+00 1.535e+05 100.0 (=/=/=)
ODE 0.000e+00 0.000e+00 0.000e+00 1.194e+05 100.0 (=/=/=)

SADE 0.000e+00 0.000e+00 0.000e+00 7.779e+04 100.0 (=/=/=)
MultiDEλ=0.91 0.000e+00 0.000e+00 0.000e+00 5.032e+04 100.0 (=/=/=)
MultiDEλ=0.99 0.000e+00 0.000e+00 0.000e+00 5.056e+04 100.0 (=/=/=)
MultiDEλ=1.00 0.000e+00 0.000e+00 0.000e+00 5.002e+04 100.0 (=/=/=)

f2 : Shifted Schwefel’s Problem 2.21
DEGL 1.430e+01 1.559e+01 5.660e+00 N/A 0.0 (+/+/+)
JADE 1.115e+00 1.127e+00 2.264e-01 N/A 0.0 (–/–/–)

jDE 2.220e+00 2.543e+00 1.581e+00 N/A 0.0 (–/–/–)
ODE 4.631e+00 6.115e+00 6.306e+00 N/A 0.0 (=/–/–)

SADE 2.925e+01 2.961e+01 3.300e+00 N/A 0.0 (+/+/+)
MultiDEλ=0.91 5.678e+00 6.471e+00 3.266e+00 N/A 0.0 (=/=/=)
MultiDEλ=0.99 6.161e+00 6.718e+00 3.269e+00 N/A 0.0 (=/=/=)
MultiDEλ=1.00 6.396e+00 6.765e+00 2.794e+00 N/A 0.0 (=/=/=)

f3 : Shifted Rosenbrock’s Function
DEGL 0.000e+00 1.356e+00 1.908e+00 1.834e+05 66.0 (–/–/–)
JADE 2.286e+00 9.801e+00 1.956e+01 2.284e+05 8.0 (=/=/=)

jDE 3.975e+01 4.698e+01 1.956e+01 N/A 0.0 (+/+/+)
ODE 4.683e+01 9.303e+04 4.997e+05 N/A 0.0 (+/+/+)

SADE 1.918e+01 2.553e+01 2.439e+01 N/A 0.0 (+/+/+)
MultiDEλ=0.91 3.015e+00 4.210e+00 9.579e+00 2.210e+05 2.0 (=/=/=)
MultiDEλ=0.99 3.278e+00 4.480e+00 9.818e+00 2.477e+05 2.0 (=/=/=)
MultiDEλ=1.00 2.873e+00 3.110e+00 3.023e+00 2.498e+05 2.0 (=/=/=)

f4 : Shifted Rastrigin’s Function
DEGL 1.492e+02 1.515e+02 2.531e+01 N/A 0.0 (+/+/+)
JADE 0.000e+00 0.000e+00 0.000e+00 2.217e+05 100.0 (=/=/=)

jDE 7.136e+01 7.198e+01 6.070e+00 N/A 0.0 (+/+/+)
ODE 3.651e+02 3.488e+02 4.078e+01 N/A 0.0 (+/+/+)

SADE 0.000e+00 5.680e+00 1.106e+01 2.305e+05 68.0 (+/+/+)
MultiDEλ=0.91 0.000e+00 0.000e+00 0.000e+00 1.935e+05 100.0 (=/=/=)
MultiDEλ=0.99 0.000e+00 0.000e+00 0.000e+00 1.962e+05 100.0 (=/=/=)
MultiDEλ=1.00 0.000e+00 0.000e+00 0.000e+00 2.158e+05 100.0 (=/=/=)

f5 : Shifted Griewank’s Function
DEGL 7.000e-03 1.382e-02 2.143e-02 3.251e+04 48.0 (+/+/+)
JADE 0.000e+00 1.020e-03 2.839e-03 4.470e+04 88.0 (=/=/=)

jDE 0.000e+00 0.000e+00 0.000e+00 1.538e+05 100.0 (–/–/–)
ODE 0.000e+00 1.200e-03 3.090e-03 1.212e+05 86.0 (=/=/=)

SADE 0.000e+00 5.760e-03 1.041e-02 7.681e+04 64.0 (+/+/+)
MultiDEλ=0.91 0.000e+00 6.800e-04 2.369e-03 5.018e+04 92.0 (=/=/=)
MultiDEλ=0.99 0.000e+00 1.480e-03 3.694e-03 5.118e+04 84.0 (=/=/=)
MultiDEλ=1.00 0.000e+00 1.320e-03 3.766e-03 5.041e+04 88.0 (=/=/=)

evolution phase. This indicates that the forgetting factor values should adapt
through different evolution phases. This is a very interesting research area that
we intend to extensively study in the future.

5 Conclusions

Recent Differential Evolution variations suggest that the advantages of several
DE variants can be exploited by integrating them in adaptive schemes. We at-
tempt to exploit the characteristics of different DE variants in an attempt to



Table 2. Error values of the proposed DE framework, MultiDE, and five state-of-the-
art DE variants on the last five 50–dimensional versions of the considered benchmark
set (f6–f10).

Algorithm Median Mean St.D. NFE Success St. Sig.
f6 : Shifted Ackley’s Function

DEGL 2.901e+00 3.001e+00 6.213e-01 N/A 0.0 (+/+/+)
JADE 0.000e+00 0.000e+00 0.000e+00 6.353e+04 100.0 (=/=/=)

jDE 0.000e+00 0.000e+00 0.000e+00 2.281e+05 100.0 (=/=/=)
ODE 0.000e+00 2.460e-03 1.739e-02 1.753e+05 98.0 (=/=/=)

SADE 0.000e+00 3.442e-01 5.674e-01 1.161e+05 72.0 (+/+/+)
MultiDEλ=0.91 0.000e+00 0.000e+00 0.000e+00 7.363e+04 100.0 (=/=/=)
MultiDEλ=0.99 0.000e+00 0.000e+00 0.000e+00 7.336e+04 100.0 (=/=/=)
MultiDEλ=1.00 0.000e+00 1.758e-02 1.243e-01 7.362e+04 98.0 (=/=/=)

f7 : Hybrid Composition Function 1 (f16 [6])
DEGL 8.144e+01 7.839e+01 3.066e+01 N/A 0.0 (+/+/+)
JADE 1.167e-05 2.697e-05 5.025e-05 N/A 0.0 (+/+/+)

jDE 9.126e-05 9.085e-05 2.451e-05 N/A 0.0 (+/+/+)
ODE 5.736e-03 6.463e-03 3.008e-03 N/A 0.0 (+/+/+)

SADE 3.124e-02 2.524e-01 1.503e+00 2.188e+05 12.0 (+/+/+)
MultiDEλ=0.91 1.559e-13 1.426e-03 6.143e-03 1.749e+05 94.0 (=/=/=)
MultiDEλ=0.99 1.165e-13 2.146e-04 1.517e-03 1.741e+05 98.0 (=/=/=)
MultiDEλ=1.00 1.788e-13 2.167e-13 1.990e-13 1.767e+05 100.0 (=/=/=)

f8 : Hybrid Composition Function 2 (f17 [6])
DEGL 1.157e+02 1.151e+02 3.575e+01 N/A 0.0 (+/+/+)
JADE 8.797e+00 9.285e+00 1.551e+00 N/A 0.0 (+/+/+)

jDE 6.427e+00 6.320e+00 9.796e-01 N/A 0.0 (+/+/+)
ODE 8.416e+00 8.591e+00 8.773e-01 N/A 0.0 (+/+/+)

SADE 4.013e-01 1.241e+00 3.015e+00 N/A 0.0 (+/+/+)
MultiDEλ=0.91 1.535e-01 3.250e-01 7.725e-01 N/A 0.0 (=/=/–)
MultiDEλ=0.99 1.213e-01 3.729e-01 9.330e-01 N/A 0.0 (=/=/–)
MultiDEλ=1.00 1.906e-01 3.587e-01 1.144e+00 N/A 0.0 (+/+/=)

f9 : Hybrid Composition Function 3 (f18 [6])
DEGL 3.777e+01 3.621e+01 1.070e+01 N/A 0.0 (+/+/+)
JADE 2.792e-01 2.787e-01 3.346e-02 N/A 0.0 (+/+/+)

jDE 1.098e-01 1.082e-01 3.737e-02 N/A 0.0 (+/+/+)
ODE 5.347e+00 7.079e+00 5.950e+00 N/A 0.0 (+/+/+)

SADE 9.096e-02 9.885e-02 7.226e-02 N/A 0.0 (+/+/+)
MultiDEλ=0.91 4.158e-04 6.529e-04 8.106e-04 N/A 0.0 (=/–/–)
MultiDEλ=0.99 1.001e-03 2.019e-03 2.570e-03 N/A 0.0 (+/=/–)
MultiDEλ=1.00 4.474e-02 5.518e-02 2.886e-02 N/A 0.0 (+/+/=)

f10 Hybrid Composition Function 4 (f19 [6])
DEGL 1.175e+01 1.114e+01 2.671e+00 N/A 0.0 (+/+/+)
JADE 0.000e+00 1.823e-01 3.965e-01 5.144e+04 80.0 (=/=/=)

jDE 8.186e-15 9.568e-15 5.738e-15 1.662e+05 100.0 (+/+/+)
ODE 5.526e-17 3.022e-01 6.365e-01 1.535e+05 78.0 (+/+/+)

SADE 2.100e+00 2.132e+00 1.442e+00 8.487e+04 12.0 (+/+/+)
MultiDEλ=0.91 0.000e+00 2.104e-01 4.452e-01 5.848e+04 76.0 (=/=/=)
MultiDEλ=0.99 0.000e+00 2.816e-01 4.340e-01 5.850e+04 66.0 (=/=/=)
MultiDEλ=1.00 0.000e+00 3.236e-01 6.636e-01 5.793e+04 72.0 (=/=/=)

improve their performance. Borrowing ideas from adaptive filter theory we de-
velop an “online” algorithmic adaptation framework. The proposed framework
is based on tracking the parameters of a multinomial distribution to capture the
potentially changing probabilities of success of the different algorithms involved.

Experimental results on 10 benchmark functions demonstrate that the pro-
posed framework is very promising. For the majority of the tested cases, it ex-
hibits great performance gains against other five DE variants. The most ap-
propriate degree of forgetting depends on the evolution stage, as well as the



problem. It would be interesting to further study its impact and develop an
adaptive forgetting factor scheme.
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