
A Separability Prototype for Automatic Memes with
Adaptive Operator Selection

Michael G. Epitropakis∗, Fabio Caraffini†, Ferrante Neri† and Edmund K. Burke∗
∗Computing Science and Mathematics, School of Natural Sciences, University of Stirling,

Stirling FK9 4LA, Scotland, United Kingdom
†Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University,

The Gateway, Leicester LE1 9BH, England, United Kingdom,
Email: {mge@cs.stir.ac.uk, fabio.caraffini@dmu.ac.uk, fneri@dmu.ac.uk, e.k.burke@stir.ac.uk}

Abstract—One of the main challenges in algorithmics in gen-
eral, and in Memetic Computing, in particular, is the automatic
design of search algorithms. A recent advance in this direction (in
terms of continuous problems) is the development of a software
prototype that builds up an algorithm based upon a problem
analysis of its separability. This prototype has been called the
Separability Prototype for Automatic Memes (SPAM). This article
modifies the SPAM by incorporating within it an adaptive model
used in hyper-heuristics for tackling optimization problems. This
model, namely Adaptive Operator Selection (AOS), rewards at
run time the most promising heuristics/memes so that they are
more likely to be used in the following stages of the search process.
The resulting framework, here referred to as SPAM-AOS, has
been tested on various benchmark problems and compared with
modern algorithms representing the-state-of-the-art of search for
continuous problems. Numerical results show that the proposed
SPAM-AOS is a promising framework that outperforms the
original SPAM and other modern algorithms. Most importantly,
this study shows how certain areas of Memetic Computing and
Hyper-heuristics are very closely related topics and it also shows
that their combination can lead to the development of powerful
algorithmic frameworks.

I. INTRODUCTION

The No Free Lunch Theorems (NFLTs) [1] state that,
under certain hypotheses, the performance of any pair of
algorithms A and B averaged over all possible problems is the
same. The hypotheses of the NFLTs are that the algorithms
are non-revisiting and that the decision space is discrete.
The satisfaction of these hypotheses is often non-realistic.
For example, Auger and Teytaud [2] show that NFLTs are
not valid for continuous problems while Poli and Graff [3]
show that the NFLTs are not valid in meta-spaces, i.e. the
space of operators. Nonetheless, NFLTs has been an extremely
important result for the computer science community as it
changed the landscape of search methodology research. More
specifically, until the 1990s, many researchers were attempting
to define a “super-algorithm” that is an algorithm which is
superior to all the other algorithms over all problems, see e.g.
[4]. After the publication of the NFLTs, researchers had to
radically change their way of thinking. The search algorithm
became a domain specific solver. The problem can be seen
as the starting point for an algorithmic design process whose
outcome is a procedure that addresses the features of that given
problem, see e.g. [5], [6], and [7].

Since a problem change would result in a new design
(and thus human effort), some research has been oriented

towards a design of “flexible” search algorithm, i.e. those
algorithms that change their features and adapt to (usually
slightly) diverse problems hence displaying a reasonable good
performance on an array of problems without the need of a
major human intervention from the algorithmic designer, see
[8]. This flexibility is usually achieved by means of the use
of multiple algorithmic operators and an adaptive system that
coordinates these operators, see e.g. [9] and [10]. The main
idea is that multiple diverse algorithmic operators compensate
for each other with their search logics. In this way, the
algorithmic framework that employs multiple operators can
reliably and robustly tackle various problem features, thus
adapting to a new problem. This idea is the backbone of
two algorithmic philosophies, Hyper-heuristics and Memetic
Computing.

A hyper-heuristic is an algorithm composed of multiple
algorithms coordinated by another software component. Usu-
ally, the latter incorporates a machine learning technique and
acts as a supervisor structure that learns which algorithms are
the most suitable for a given problem. An extensive literature
on this topic is available, for example, see [11] and [12].
More recently, graph colouring heuristics have been hybridized
with a random ordering heuristic [13]. Extensive discussions
about advances in hyper-heuristics are given in [14]–[17]. The
most challenging part of the hyper-heuristic design is the logic
behind the coordination of the algorithms. A classical approach
consists of assigning a score and rewarding the most promising
heuristics: the so called choice function [11]. Recently, a wide
range of diverse approaches have been proposed. Many of
these approaches are based on reinforcement learning in a
stand alone and combined fashion, see for example [12], [18]–
[20] and [21]. Reinforcement learning, making use of memory-
based mechanisms has also been proposed [22]. Modern hyper-
heuristics also make use of multi-agent operators, see [23]
and [24]. A competition for hyper-heuristic development was
held in 2011 based on a framework called HyFlex [25].
This competition generated several effective hyper-heuristic
methods1, see for example [26].

The concept of the hyper-heuristic is explored also under
the name of algorithm portfolios where the emphasis is placed
upon the diversity of the available algorithms that are available
to compose the entire framework. Algorithms of this kind can
be designed using heuristic rules for the coordination, see [27]

1See http://www.asap.cs.nott.ac.uk/external/chesc2011/

and [28]. A famous portfolio platform oriented towards the
solution of the propositional satisfiability problem is called
SATzilla, see [29] and [30]. Among the several studies that
have been carried out on this platform, we highlight here the
work on the automatic coordination system in [31] and on the
prediction of the algorithm run time [32].

Memetic Computing (MC) is an area that investigates
algorithmic structures that include multiple interacting het-
erogeneous operators. The interaction (coordination) amongst
operators allows the proper functioning of the entire frame-
work, see [33] and [8]. Clearly, there is a major overlap
between hyper-heuristics and many areas of MC. However,
the two concepts can be distinguished for a philosophical
point that has some important implications in the algorithmic
implementation. While a hyper-heuristic can be seen as a
list of search methods and a component performing their
coordination, a MC algorithm can be viewed as a whole
algorithm composed of many parts in an unspecified way. In
addition, in a hyper-heuristic, a unit representing the external
framework can be thought of as a ‘whole’ search method with
a ‘budget’. In contrast, the unit of a MC structure can be seen
as an algorithmic operator, that is a tuple composed of search
move and a selection logic, see [34] and [35]. In other words,
the unit representing many MC structures can (as a generalized
statement) be viewed as being much ‘smaller’ than the unit
composing a hyper-heuristic.

In many areas of MC, as well as for hyper-heuristics,
the coordination between operators is the hardest and most
challenging aspect in guaranteeing a good algorithmic per-
formance. An example of meme coordination within memetic
frameworks is meta-Lamarckian learning, [36], where the local
search components are rewarded on the basis of their success
history. In [37] [38], and [39], the coordination of the operators
relies on evolution. The operators are encoded within the
solution (self-adaptation) or in in a parallel population linked
to the solutions (co-evolution). The operators related to the
fittest individuals are selected for the subsequent generations.
Another way to perform the coordination of the operators
is by means of a control on the population diversity or its
estimates [40]–[42].

All these adaptive optimization algorithms coordinate the
sub-algorithms at runtime on the basis of feedback given by the
algorithmic functioning. In most cases, this feedback is based
on the success of the sub-algorithm/local search/algorithmic
operator. Recent studies in MC propose a different logic: the
algorithm is automatically built up on the basis of an analysis
carried out on the problem and aiming at extracting its features.
These studies at first focused on elementary structures, namely
sequential and parallel [43], [44]. Subsequently a first working
prototype of automatic design based on problem analysis
restricted to the separability, namely Separability Prototype for
Automatic Memes (SPAM), was proposed in [35].

This paper, whilst considering the algorithmic operators
in [35], proposes to coordinate them by means of a hyper-
heuristic rule. More specifically, we adopt the general concept
of adaptive operator selection [18], [45]–[48] and incorporate
it in the core structure of the SPAM algorithm. In this way, the
resulting framework has the structure and operators of SPAM
but, at run time, the selection of the components is intended

to adapt progressively , on the basis of a success criterion, to
the requirements of the problem.

The remainder of this paper is structured in the following
way. Section II briefly illustrates the logic and the structure of
the SPAM. Section III describes the proposed modified SPAM
with hyper-heuristic coordination of the operators. Section IV
displays the comparative results and the performance of the
proposed algorithm with respect to the state-of-the-art. Section
V gives the conclusions of this work.

II. SEPARABILITY PROTOTYPE FOR AUTOMATIC MEMES

The SPAM algorithm is a prototype of a large and am-
bitious project, that is a software platform for the automatic
design of search methods in continuous optimization. This
platform, currently under development, will analyze a given
problem, in order to extract its features. These features will
then be used to design the algorithm by selecting, combining,
and linking the suitable algorithmic operators.

Before entering into the implementation details, let us de-
fine the notation used in this paper. Without loss of generality,
we will refer to the minimization problem of an objective
function (or fitness) f(x), where the candidate solution x is
a vector of n design variables (or genes) in a decision space
D. Thus, the optimization problem considered in this paper
consists of the detection of that solution x∗ ∈ D such that
f(x∗) < f(x), and this is valid ∀x ∈ D. Array variables are
highlighted in bold face throughout this paper.

The SPAM algorithm is composed of two local search
operators connected in parallel, see [44]. The first operator,
here indicated with S, is a local search algorithm which deals
with a single solution along its n axes, i.e. it separately perturbs
each design variable. This meme can be viewed as a fairly
straightforward hill-descent algorithm. It was previously used
in [49] within a memetic structure.

The S implementation requires a generic input solution x
and a trial solution xt. S perturbs the candidate by computing,
for each coordinate i (each gene), xti = xi − ξ, where ξ
is the exploratory radius. Subsequently, if xt outperforms x,
the solution x is updated (the values of xt are copied in it),
otherwise a half step in the opposite direction is performed:
xti = xi+

ξ
2 . Again, xt replaces x if it outperforms it. If there

is no update, then the exploration was unsuccessful. In this
case, the radius ξ is halved. This is repeated for all the design
variables. It has to be noted that the initial value of radius ξ
is usually fixed and proportionate to the range of optimization
space bounds (here ξ in fixed to 0.4). For the sake of clarity,
Algorithm 1 describes the working principles of the S operator.

The second operator is the Rosenbrock algorithm (R) [50].
This operator, has been shown to always converge to a local
optimum, under specific conditions [51]. At the beginning
of the process, R is similar to S as it explores each of
the n directions, by perturbing the input solution x with an
initial step size vector h. A matrix A is initialized as the
identity matrix. While ever new improvements are found, for
j = 1, 2, . . . , n, a new trial point xt is generated by perturbing
the ith design variable of solution x in the following way:

xti = xi + hj ·Ai,j (1)

Algorithm 1 Pseudo-code of the S operator.
1: INPUT x
2: while condition on the local computational budget do
3: for i = 1 : n do
4: xti = xi − ξ
5: if f

(
xt
)
≤ f (x) then

6: x = xt

7: else
8: xti = xi +

ξ
2

9: if f
(
xt
)
≤ f (x) then

10: x = xt

11: end if
12: end if
13: end for
14: if x == xt then
15: ξ = ξ

2
16: end if
17: end while
18: OUTPUT x

for i = 1, 2, . . . , n. When successful, x is updated and the
step size is increased by a factor α (hj = α · hj), otherwise
it is decreased by means of a factor β then the opposite
direction will be considered (hj = −β · hj). We repeat this
procedure until an improvement of solution x is found. After
every success has been determined and examined in each base
direction, then the Gram-Schmidt orthogonalization procedure
is used to rotate the coordinate system towards the approxi-
mated gradient. This operation yields an updated version of
the matrix A. After this, the step size vector h is reinitialized
and the process is repeated, employing the rotated coordinate
system, and changing the value of x according to Eq. (1).
It is important to note that, the use of a rotated coordinate
system means that the trial generation mechanism corresponds
to a diagonal move by following the direction determined by
the gradient. The termination criterion of R is determined by
two conditions. The first criterion is based on the minimum
element of the vector h. The second criterion concerns the
minimum difference between xt and x design variables. In
formal terms, R is run until the following condition is true:
min(|h|) > ε OR min(|xt − x|) > ε, where min() is the
minimum vector element. If there is no improvement at all,
only the first condition is considered2.

These two local search operators are clearly very diverse
in terms of the search logic. Whilst S attempts to optimize
the problem by perturbing the axes separately (moves along
the axes), R attempts to follow the directions of the gradient,
hence performing diagonal moves.

The SPAM is based on the idea that (due to their features),
S is efficient for tackling separable problems whilst R should
be used only when the problem is not separable. Furthermore,
the separability of a problem is considered in [35] as a fuzzy
property of optimization problems. More specifically, it is
possible to consider a problem as being separable to a certain
degree. In this light, a problem analyzer has been designed
to extract the degree of separability of the given problem.
The degree of separability is an index between 0 and 1 that
results from the problem analysis phase. On the basis of this
parameter, an activation probability is given to S and R. Thus,

2Note that, the parameter values are fixed to α = 2, β = 0.5, ε = 10−5

and the initial values of hj to hj = 0.1, j = 1, 2, . . . , n.

a fully separable problem (e.g. the sphere function) will be
solved only by S activations. In contrast, in the case of a highly
non separable problem, the entire budget or a large portion of
it is devoted to R. In the case of intermediate features, the
budget will be shared between the two local searchers.

The parameter representing the degree of separability is
calculated, for each problem, at the beginning of the search, by
letting the Covariance Matrix Adaptation Evolution Strategy
(CMAES) [52] perform some optimization steps and then
manipulate the estimated covariance matrix. More specifically,
from the covariance matrix, the Pearson correlation matrix |ρ|
is computed, and its elements are averaged and normalized in
order to extract the index that describes the separability of the
problem. For implementation details, see [35].

III. THE PROPOSED FRAMEWORK

As discussed previously, a problem analysis might reveal
useful information on selecting an appropriate operator for the
problem at hand. However, the selection of the “most suitable”
operator might be a very challenging task, especially in cases
where the problem analysis is not insightful enough. To
alleviate the problem of selecting the most “suitable” operator
a priori, we incorporate an Adaptive Operator Selection (AOS)
model in SPAM’s structure to adaptively choose the most
preferable operator at hand. This section briefly describes the
main algorithmic concepts behind the proposed framework
SPAM-AOS, (SPAM with an Adaptive Operator Selection
model).

The SPAM-AOS framework incorporates two main con-
cepts, a credit assignment module C and an adaptive oper-
ator selection model M, or a selective hyper-heuristic. The
main role of the former is to estimate the quality of the
applied operators based on feedback from the search process,
whilst the latter adopts the estimated qualities to adaptively
select which search operator to apply at the current stage.
Intuitively, the model will select the most successful operator
based on the historical information that has been acquired by
the search process until the current stage. Several operator
selection models have been proposed in the literature which
are inspired by similar concepts from different scientific fields.
Each model exhibits different characteristics and dynamics
that are based on the acquired feedback during the search
process. The proposed framework is a general strategy that
is able to adopt any of the aforementioned adaptive operator
selection models. Representative examples of such models
include: probability matching [47], [48], adaptive pursuit [47],
[48], statistical based models like the multinomial distribution
with history forgetting [45], [46], and reinforcement learning
approaches [18], [53]. However, for simplicity (and due to
space limitations), in this paper we incorporate the well-known
and widely used Probability Matching model [47], [48]. Future
work will include extensive comparisons between the most
representative models.

The credit assignment module and the adaptive operator
selection model used in this paper are elucidated in the
following sections.

A. Credit assignment module

The main role of a credit assignment module is to assign a
representative score, or credit, that rewards the most “suitable”

operator at the current search stage. For each available oper-
ator we adopt as credit the simple fitness improvement [18],
[45] between the current solution xp and the best solution
ever found by the algorithm xe (the elite solution). Thereby,
the fitness improvement ηa of an operator a can be easily
calculated according to:

ηa = |f(xp)− f(xe)| (2)

Notice that the credit equals zero, if no improvement is
achieved.

In general, various different reward approaches can be used
at this point, such as the latest reward (instantaneous), the
average or a ranked-based reward [18]. However some of them
tend to be unstable and noisy estimations of credit due to
the stochastic nature of the search process. To alleviate this
drawback, we estimate the empirical quality (or credit) of an
operator by utilizing the average value of a sliding window of
its latest w rewards. In detail, suppose that we have a pool of
κ available operators, A = {a1, a2, . . . , aκ}; let Si be a set of
the latest w fitness improvement rewards (ηai) achieved by the
operator ai during the time step t of the algorithm. We adopt
as the final credit assignment value rai(t), the average reward
of the sliding window Sai , which can be calculated according
to:

rai(t) =

∑|Sai
|

j=1 Sai(j)

|Sai |
(3)

where |Sai | denotes the cardinality of the set Sai .

B. Adaptive Operator Selection model: Probability Matching

We utilize, as the adaptive operator, selection model the
simple and well-known Probability Matching (PM) [18], [47],
[48]. Intuitively, PM updates the selection probability of a
specific operator proportionally to its empirical quality with
respect to the others. In detail, suppose we have a set of
κ available operators A = {a1, a2, . . . , aκ} and a selection
probability vector P (t) = {p1(t), p2(t), . . . , pκ(t)}. Initially,
all operators have equal probability of being selected (pi =
1/κ,∀i ∈ {1, 2, . . . , κ}). After the application of an operator
on a solution vector, a reward (rai(t)) is calculated based
on the credit assignment module. The environment in which
the adaptation procedure operates is non-stationary and the
estimation of the empirical quality can be more reliable if
the newest rewards influence the empirical quality more than
the older ones. Thereby, PM estimates the empirical quality
qai(t) of the operator ai according to the following relaxation
mechanism:

qai(t+ 1) = qai(t) + γ(rai(t)− qai(t)) (4)

where γ ∈ (0, 1] is the adaptation rate (γ is fixed to 0.1) [18],
[47], [48].

Based on the quality estimate value of the operator ai,
PM updates its selection probability (pai) according to the
following formula:

pai(t+ 1) = pmin + (1− κ · pmin)
qai(t+ 1)∑κ
i=1 qai(t+ 1)

(5)

where pmin ∈ [0, 1] denotes the minimal probability value
of each operator, to ensure that the chances of applying

Algorithm 2 The general SPAM-AOS algorithmic scheme
1: Perform problem analysis as in [35] and calculate xe.
2: INPUT: an initial solution xe, a credit assignment module C, and an AOS

model M.
3: Initialize the AOS model M and the credit assignment module C.
4: xp = xe

5: while the remaining budget is available do
6: Select kstr based on the AOS model M
7: if kstr = 1 then
8: Apply the S operator to xp
9: else

10: Apply the R operator to xp
11: end if
12: Update credit assignment module C based on the fitness improve-

ment of xe, xp. (based on Eqs. (2), (3))
13: Update the AOS model M (based on Eqs. (4), (5))
14: if the operator succeeded at improving upon xe performance then
15: xe = xp

16: end if
17: if the operator failed at improving upon xe performance and the

selected operator is the same that failed then
18: Perturb xp according to an exponential crossover perturbation [35].
19: if xp has a better performance against xe then
20: xe = xp

21: end if
22: end if
23: end while

each operator will not vanish [47], [48]. Having calculated
the probabilities of all operators in the pool, we employ a
stochastic selection procedure (a simple roulette wheel) to
select which operator to apply.

C. SPAM with an adaptive operator selection model

Having defined the SPAM algorithm and the two main
concepts of the proposed framework, we proceed with the
description of the proposed approach.

More specifically, the algorithmic framework of SPAM-
AOS is strongly based on SPAM’s structure. The proposed
general algorithmic framework is briefly demonstrated in Algo-
rithm 2. Initially the separability problem analysis is performed
(line 1 of Alg. 2) and the best located solution or elite solution,
xe, is used as the initial point of the algorithm (line 2 of
Alg. 2). As previously described, the separability problem
analysis involves the application of the CMAES algorithm for
a limited budget of function evaluations. Next, an initialization
process of the credit assignment module C and the AOS model
M is performed, if necessary (line 3 of Alg. 2). C initializes
the data structures for the sliding windows and M assigns
equal probabilities to all the used operators. For each step
of the algorithm, we employ an AOS model M to select
which operator kstr to apply on the xp solution. In the general
case, we might have a pool of κ available search operators,
i.e., kstr ∈ {1, 2, . . . , κ}. As in SPAM, we incorporate the
S and R operators (κ = 2) and select one of them accord-
ingly (lines 6–11 of Alg. 2). The current version of SPAM-
AOS incorporates the PM model described previously, which
stochastically selects kstr. After the application of the kstr
operator, we score it based on the credit assignment module C,
which appropriately rewards the most suitable operator. Here,
we utilize a reward based on the fitness improvement between
the resulting solution xp and the elite solution xe, (line 12 of
Alg. 2). Having calculated the reward of the applied operator,
we update its quality estimation value and the corresponding

selection probability based on Eqs. (4), (5) (line 13 of Alg. 2).
The remaining steps of the algorithm are similar to SPAM
(lines 14–22 of Alg. 2), i.e., we update the elite solution if
we have improved it and we apply an exponential crossover
perturbation strategy, if the applied operator failed to improve
the elite solution xe [35].

IV. NUMERICAL RESULTS

The proposed SPAM-AOS has been compared with the
original SPAM algorithm [35], the CCPSO2 [54], and the
MDE-pBX [55]. Their effectiveness is assessed on two bench-
mark suites that include scalable problems with different
characteristics: the recently proposed CEC 2013 [56] (28
benchmark functions) and BBOB 2010 benchmark suites [57]
(25 benchmark functions). In this paper, we consider the 10,
30 and 50-dimensional versions of the CEC 2013 suite and the
100-dimensional versions of the BBOB 2010 suite. A detailed
description of the benchmarks can be found in the [56], [57].
It has to be noted that all considered algorithms use their
default parameter settings [35], [54], [55], whilst the proposed
SPAM-AOS utilizes its default parameter values as previously
described.

Throughout this section, we adopt the experimental pro-
tocol used in [35]. Specifically, for each algorithm and each
benchmark function, we conduct 100 independent runs. For
each run, a budget of maxFES = 5000 · D function eval-
uations is employed, where D is the dimensionality of the
problem. Tables I, II, III, and IV, show the results of our
experiments in terms of final average error and correspond-
ing standard deviation. A boldface font has been used to
indicate the best performing algorithm, for each problem. To
assess the statistical significance of the observed performance
differences, for each problem and each algorithm we apply
the non-parametric Wilcoxon rank sum test [58] between the
corresponding algorithm and the proposed SPAM-AOS. The
mark “+” denotes the cases where the null hypothesis is
rejected at the 5% significance level and SPAM-AOS performs
significantly better. Similarly, the mark “-” shows the rejection
of the null hypothesis at the 5% level of significance and
SPAM-AOS exhibits inferior performance. In the remaining
cases, which we mark with “=”, the null hypothesis is accepted
which indicates that the performance of the algorithms being
compared is statistically indistinguishable.

To this end, Tables I, II, III, and IV exhibit the extensive
experimental results of all algorithms on the 10, 30, 50-
dimensional CEC 2013 and on the 100-dimensional BBOB
2010 benchmark sets respectively. It can be clearly observed
that, in the majority of the cases, SPAM-AOS either signifi-
cantly outperforms the other algorithms or it behaves equally
well. There are some cases where it produces an inferior
performance (10-dimensional cases against the MDE-pBX al-
gorithm), but this behavior radically changes as the dimension-
ality increases. Specifically, the impact of the adaptive operator
selection approach on SPAM-AOS is evident since for the
majority of the cases the performance gains are significantly
better than the original SPAM algorithm. Similarly, comparing
SPAM-AOS with CCPSO2, we can observe that SPAM-AOS
exhibits superior performance in more than 60% of the tested
cases. MDE-pBX is better than SPAM-AOS in the majority of

the 10-dimensional CEC 2013 functions, but once more this
behavior radically changes in the remaining experiments.

Finally, to have a general statistical sense of the signifi-
cance of the algorithms across all problems and to alleviate the
problem of having Type I errors in multiple comparisons with a
higher probability, we employ the Holm-Bonferroni correction,
see [59]. As such, Table V reports the rankings of the algorithm
and the numerical results from the Holm-Bonferroni test.
Clearly, the performance differences between SPAM-AOS and
the other implemented algorithms are statistically significant.

TABLE V. HOLM-BONFERRONI PROCEDURE (REFERENCE:
SPAM-AOS, RANK = 2.94E+00)

j Optimizer Rank zj pj δ/j Hypothesis
1 MDE-pBX 2.56e+00 -2.86e+00 2.13e-03 5.00e-02 Rejected
2 SPAM 2.25e+00 -5.10e+00 1.67e-07 2.50e-02 Rejected
3 CCPSO2 2.18e+00 -5.65e+00 8.14e-09 1.67e-02 Rejected

To summarize the performance obtained by the imple-
mented algorithms, we provide a graphical illustration of their
overall performance across all benchmark functions used in
this suite of experiments. As such, we employ the Empirical
Cumulative Distribution Function (ECDF) graph of the nor-
malized performance. In detail, to be able to compare all al-
gorithms on different benchmark problems we normalize their
performance values per benchmark problem linearly in a com-
mon range, such as in [0, 1]. Note that, in the current setting,
performance is measured by the optimal objective value found
by an algorithm on one execution run. Thus, normalized per-
formance values close to zero indicate best performance, whilst
the performance becomes worse as the values increase to one.
Having calculated the normalized performance values of an
algorithm A over all benchmark functions, ECDF values can
be measured according to ECDF (x) = 1

n

∑n
i=1 I(−∞,x](xi),

where n is the number of benchmark functions times the num-
ber of independent executions of algorithm A per benchmark
function and I(−∞,x](·) is the indicator function which is equal
to one if xi ≤ x, and to zero otherwise. Intuitively, an ECDF
curve of an algorithm A depicts the empirical probability of
observing a performance value y that is less than or equal to
y. This enables a summarizing comparison between different
algorithms, since higher ECDF values for the same normalized
performance value indicate better performance.

Figure 1 illustrates the ECDF graph of the four imple-
mented algorithms across all benchmark sets considered in this
paper. It can be clearly observed that the SPAM-AOS algorithm
exhibits great potential across all benchmark functions, since
for the same performance value it always has higher ECDF
values against the other algorithms. As such, it is more likely
that it can provide better performance gains against the other
three algorithms. Regarding the overall performance of the re-
maining algorithms, SPAM comes second since, for the lower
normalized performance values, it exhibits higher cumulative
frequencies against CCPSO2 and MDE-pBX. Similarly, MDE-
pBX outperforms CCPSO2, since its ECDF curve values are
always higher than the corresponding ECDF values of the
CCPSO2 algorithm.

V. CONCLUSION

This paper proposes the integration of a technique nor-
mally used within hyper-heuristic frameworks within an MC

TABLE I. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REF.: SPAM-AOS) ON CEC2013 [56] IN 10 DIMENSIONS.
SPAM-AOS SPAM CCPSO2 MDE-pBX

f1 0.00e + 00 ± 0.00e + 00 0.00e + 00± 0.00e + 00 = 3.08e − 03± 1.05e − 02 + 0.00e + 00± 2.27e − 14 =
f2 0.00e + 00 ± 1.36e − 13 0.00e + 00± 0.00e + 00 = 1.80e + 06± 1.21e + 06 + 2.54e + 03± 5.07e + 03 +
f3 1.31e + 00 ± 3.50e + 00 1.08e + 02± 7.77e + 02 = 7.41e + 07± 1.12e + 08 + 1.41e + 05± 1.23e + 06 +
f4 0.00e + 00 ± 0.00e + 00 0.00e + 00± 0.00e + 00 = 1.05e + 04± 2.69e + 03 + 3.82e + 00± 3.15e + 01 +
f5 1.14e − 13 ± 6.63e − 14 3.46e − 10± 1.34e − 09 + 2.20e − 02± 6.13e − 02 + 0.00e + 00± 7.01e − 14 -
f6 4.11e + 00 ± 4.78e + 00 5.63e + 00± 4.78e + 00 + 4.67e + 00± 7.85e + 00 + 5.70e + 00± 4.83e + 00 =
f7 6.04e + 01 ± 6.04e + 01 7.57e + 10± 7.18e + 11 = 3.99e + 01± 1.26e + 01 = 7.37e + 00± 1.02e + 01 -
f8 2.04e + 01 ± 1.38e − 01 2.05e + 01± 1.22e − 01 + 2.04e + 01± 7.48e − 02 + 2.05e + 01± 9.69e − 02 +
f9 6.73e + 00 ± 1.72e + 00 1.42e + 01± 4.69e + 00 + 5.48e + 00± 8.99e − 01 - 2.16e + 00± 1.39e + 00 -
f10 1.48e − 02 ± 1.40e − 02 1.47e − 02± 1.40e − 02 = 1.93e + 00± 9.27e − 01 + 1.06e − 01± 8.03e − 02 +
f11 6.30e + 00 ± 2.86e + 00 1.67e + 01± 7.81e + 01 = 2.76e + 00± 1.85e + 00 - 2.89e + 00± 1.72e + 00 -
f12 1.80e + 01 ± 9.61e + 00 1.27e + 02± 2.01e + 02 + 3.39e + 01± 1.02e + 01 + 1.02e + 01± 4.53e + 00 -
f13 3.55e + 01 ± 1.52e + 01 2.83e + 02± 4.49e + 02 + 4.22e + 01± 8.88e + 00 + 1.94e + 01± 8.85e + 00 -
f14 2.18e + 02 ± 1.05e + 02 7.63e + 02± 6.39e + 02 + 8.67e + 01± 6.15e + 01 - 1.08e + 02± 9.77e + 01 -
f15 1.00e + 03 ± 3.65e + 02 1.64e + 03± 4.51e + 02 + 1.03e + 03± 2.70e + 02 = 7.56e + 02± 2.63e + 02 -
f16 2.92e − 01 ± 1.98e − 01 5.32e − 01± 6.39e − 01 + 1.31e + 00± 2.35e − 01 + 5.74e − 01± 4.62e − 01 +
f17 1.58e + 01 ± 4.28e + 00 2.19e + 02± 4.34e + 02 + 1.79e + 01± 2.64e + 00 + 1.32e + 01± 1.92e + 00 -
f18 4.17e + 01 ± 1.42e + 01 7.78e + 02± 5.07e + 02 + 5.82e + 01± 6.30e + 00 + 2.02e + 01± 5.18e + 00 -
f19 7.33e − 01 ± 3.44e − 01 9.20e − 01± 3.30e − 01 + 1.00e + 00± 3.69e − 01 + 6.57e − 01± 2.22e − 01 =
f20 4.11e + 00 ± 3.64e − 01 4.45e + 00± 4.82e − 01 + 3.59e + 00± 2.16e − 01 - 2.73e + 00± 6.04e − 01 -
f21 2.86e + 02 ± 1.26e + 02 3.25e + 02± 1.14e + 02 + 3.68e + 02± 6.68e + 01 + 3.98e + 02± 1.99e + 01 +
f22 3.34e + 02 ± 1.19e + 02 1.19e + 03± 8.95e + 02 + 1.23e + 02± 6.60e + 01 - 1.77e + 02± 1.37e + 02 -
f23 1.52e + 03 ± 4.16e + 02 2.23e + 03± 5.07e + 02 + 1.37e + 03± 2.82e + 02 - 8.43e + 02± 3.48e + 02 -
f24 1.93e + 02 ± 4.46e + 01 2.72e + 02± 1.43e + 02 + 2.11e + 02± 1.80e + 01 = 2.05e + 02± 5.21e + 00 +
f25 2.15e + 02 ± 1.90e + 01 2.52e + 02± 7.08e + 01 + 2.12e + 02± 1.46e + 01 - 2.01e + 02± 8.24e + 00 -
f26 1.67e + 02 ± 6.02e + 01 2.51e + 02± 1.45e + 02 + 1.71e + 02± 2.37e + 01 + 1.40e + 02± 4.16e + 01 -
f27 3.81e + 02 ± 7.32e + 01 4.24e + 02± 2.72e + 02 = 4.33e + 02± 5.71e + 01 + 3.04e + 02± 1.72e + 01 -
f28 2.92e + 02 ± 9.79e + 01 1.00e + 03± 1.14e + 03 + 4.01e + 02± 1.63e + 02 + 3.04e + 02± 5.53e + 01 +

TABLE II. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REF.: SPAM-AOS) ON CEC2013 [56] IN 30 DIMENSIONS.
SPAM-AOS SPAM CCPSO2 MDE-pBX

f1 0.00e + 00 ± 2.05e − 13 0.00e + 00± 2.01e − 13 = 1.36e − 12± 6.01e − 12 + 2.27e − 13± 4.86e − 13 +
f2 1.75e + 03 ± 1.90e + 03 1.58e + 03± 1.50e + 03 = 2.14e + 06± 1.04e + 06 + 2.70e + 05± 2.62e + 05 +
f3 7.88e + 05 ± 1.79e + 06 9.96e + 05± 1.94e + 06 = 1.13e + 09± 1.18e + 09 + 5.19e + 07± 1.18e + 08 +
f4 5.16e − 04 ± 4.54e − 03 4.05e − 02± 4.03e − 01 = 5.64e + 04± 2.09e + 04 + 3.49e + 02± 3.18e + 02 +
f5 1.14e − 13 ± 6.49e − 13 1.09e − 07± 1.00e − 06 + 3.04e − 07± 8.74e − 07 + 1.09e − 10± 1.00e − 09 +
f6 9.73e − 02 ± 4.74e − 01 4.80e − 01± 2.74e + 00 = 3.44e + 01± 2.78e + 01 + 3.41e + 01± 2.77e + 01 +
f7 4.00e + 01 ± 2.58e + 01 7.54e + 04± 7.50e + 05 = 1.19e + 02± 2.33e + 01 + 5.61e + 01± 1.90e + 01 +
f8 2.09e + 01 ± 7.13e − 02 2.10e + 01± 5.45e − 02 + 2.10e + 01± 5.44e − 02 + 2.10e + 01± 5.93e − 02 +
f9 3.00e + 01 ± 3.58e + 00 3.16e + 01± 5.34e + 00 + 3.02e + 01± 2.20e + 00 = 2.16e + 01± 4.36e + 00 -
f10 1.28e − 02 ± 7.93e − 03 1.01e − 02± 5.30e − 03 - 2.00e − 01± 9.45e − 02 + 1.81e − 01± 1.10e − 01 +
f11 2.94e + 01 ± 6.43e + 00 2.50e + 01± 6.22e + 00 - 5.76e − 01± 6.49e − 01 - 4.68e + 01± 1.54e + 01 +
f12 9.80e + 01 ± 6.27e + 01 3.34e + 02± 6.51e + 02 = 2.13e + 02± 5.62e + 01 + 6.91e + 01± 2.20e + 01 =
f13 1.99e + 02 ± 6.82e + 01 5.18e + 02± 9.98e + 02 = 2.58e + 02± 4.39e + 01 + 1.50e + 02± 3.56e + 01 -
f14 7.83e + 02 ± 2.03e + 02 1.85e + 03± 1.67e + 03 + 6.57e + 00± 3.69e + 00 - 1.20e + 03± 4.25e + 02 +
f15 4.78e + 03 ± 7.59e + 02 4.63e + 03± 8.62e + 02 = 4.03e + 03± 4.77e + 02 - 4.01e + 03± 7.00e + 02 -
f16 1.42e − 01 ± 1.23e − 01 1.26e − 01± 6.29e − 02 = 2.40e + 00± 4.03e − 01 + 1.32e + 00± 8.61e − 01 +
f17 5.71e + 01 ± 7.70e + 00 2.69e + 02± 8.25e + 02 + 3.13e + 01± 4.89e − 01 - 6.89e + 01± 1.24e + 01 +
f18 2.37e + 02 ± 5.44e + 01 8.63e + 02± 1.37e + 03 + 2.44e + 02± 5.78e + 01 = 8.31e + 01± 1.66e + 01 -
f19 2.64e + 00 ± 6.63e − 01 2.76e + 00± 8.35e − 01 = 8.55e − 01± 1.71e − 01 - 9.10e + 00± 4.94e + 00 +
f20 1.45e + 01 ± 5.14e − 01 1.46e + 01± 4.86e − 01 + 1.39e + 01± 4.52e − 01 - 1.09e + 01± 7.97e − 01 -
f21 2.40e + 02 ± 5.62e + 01 2.35e + 02± 5.54e + 01 = 2.58e + 02± 7.21e + 01 + 3.09e + 02± 7.63e + 01 +
f22 1.08e + 03 ± 3.02e + 02 2.37e + 03± 2.02e + 03 + 1.21e + 02± 7.28e + 01 - 1.11e + 03± 5.46e + 02 =
f23 6.05e + 03 ± 9.37e + 02 5.95e + 03± 1.04e + 03 = 5.26e + 03± 7.22e + 02 - 4.47e + 03± 7.32e + 02 -
f24 3.00e + 02 ± 1.88e + 02 3.20e + 02± 2.59e + 02 = 2.81e + 02± 1.08e + 01 - 2.31e + 02± 1.11e + 01 -
f25 2.94e + 02 ± 1.84e + 01 2.95e + 02± 1.75e + 01 = 3.03e + 02± 6.25e + 00 + 2.75e + 02± 1.55e + 01 -
f26 2.80e + 02 ± 8.66e + 01 3.07e + 02± 2.44e + 02 = 2.02e + 02± 4.53e + 00 = 2.16e + 02± 4.31e + 01 -
f27 8.27e + 02 ± 1.92e + 02 8.63e + 02± 2.08e + 02 = 1.07e + 03± 1.13e + 02 + 6.55e + 02± 1.13e + 02 -
f28 6.27e + 02 ± 1.36e + 03 1.04e + 03± 2.30e + 03 + 5.43e + 02± 5.77e + 02 - 3.11e + 02± 1.11e + 02 -

TABLE III. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REF.: SPAM-AOS) ON CEC2013 [56] IN 50 DIMENSIONS.
SPAM-AOS SPAM CCPSO2 MDE-pBX

f1 2.27e − 13 ± 0.00e + 00 2.27e − 13± 0.00e + 00 = 7.05e − 12± 3.53e − 11 + 3.32e − 11± 2.60e − 10 +
f2 2.66e + 04 ± 1.35e + 04 2.64e + 04± 1.24e + 04 = 4.37e + 06± 2.29e + 06 + 9.06e + 05± 4.90e + 05 +
f3 8.55e + 06 ± 1.43e + 07 6.32e + 06± 1.11e + 07 = 3.09e + 09± 3.03e + 09 + 1.42e + 08± 1.57e + 08 +
f4 5.59e + 02 ± 5.01e + 02 4.79e + 02± 6.48e + 02 - 1.08e + 05± 3.86e + 04 + 1.09e + 03± 8.33e + 02 +
f5 3.41e − 13 ± 1.05e − 12 3.81e − 10± 6.24e − 10 + 3.92e − 04± 3.89e − 03 + 2.54e − 05± 2.52e − 04 =
f6 2.74e + 01 ± 1.75e + 01 3.96e + 01± 1.34e + 01 + 4.74e + 01± 1.34e + 01 + 5.67e + 01± 2.24e + 01 +
f7 4.75e + 01 ± 2.38e + 01 4.83e + 01± 1.97e + 01 = 1.43e + 02± 2.39e + 01 + 6.81e + 01± 1.22e + 01 +
f8 2.11e + 01 ± 6.66e − 02 2.11e + 01± 6.58e − 02 = 2.12e + 01± 3.86e − 02 + 2.12e + 01± 4.36e − 02 +
f9 5.49e + 01 ± 5.03e + 00 6.85e + 01± 1.12e + 01 + 5.87e + 01± 3.26e + 00 + 4.27e + 01± 6.99e + 00 -
f10 1.24e − 02 ± 7.26e − 03 1.28e − 02± 8.01e − 03 = 2.03e − 01± 1.80e − 01 + 4.09e − 01± 5.57e − 01 +
f11 5.87e + 01 ± 1.05e + 01 5.13e + 01± 8.62e + 00 - 9.07e − 01± 8.53e − 01 - 1.21e + 02± 2.97e + 01 +
f12 2.98e + 02 ± 1.43e + 02 3.18e + 02± 2.59e + 02 = 4.55e + 02± 8.03e + 01 + 1.62e + 02± 3.45e + 01 -
f13 5.33e + 02 ± 1.12e + 02 5.61e + 02± 2.38e + 02 = 5.69e + 02± 8.18e + 01 + 3.22e + 02± 5.39e + 01 -
f14 1.41e + 03 ± 3.09e + 02 3.09e + 03± 2.95e + 03 + 7.35e + 00± 3.55e + 00 - 2.79e + 03± 8.06e + 02 +
f15 8.50e + 03 ± 1.09e + 03 8.54e + 03± 1.05e + 03 = 8.31e + 03± 8.71e + 02 = 7.58e + 03± 8.01e + 02 -
f16 8.36e − 02 ± 3.88e − 02 9.21e − 02± 4.43e − 02 = 2.75e + 00± 5.96e − 01 + 1.93e + 00± 8.76e − 01 +
f17 9.62e + 01 ± 1.11e + 01 9.83e + 01± 7.83e + 00 = 5.16e + 01± 3.28e − 01 - 1.79e + 02± 3.56e + 01 +
f18 5.37e + 02 ± 9.93e + 01 1.86e + 03± 2.49e + 03 + 4.87e + 02± 9.77e + 01 - 1.86e + 02± 3.17e + 01 -
f19 4.73e + 00 ± 8.92e − 01 4.99e + 00± 1.09e + 00 = 1.49e + 00± 2.32e − 01 - 3.94e + 01± 2.10e + 01 +
f20 2.44e + 01 ± 2.86e − 01 2.44e + 01± 4.10e − 01 = 2.33e + 01± 8.19e − 01 - 2.01e + 01± 9.17e − 01 -
f21 4.27e + 02 ± 3.30e + 02 5.00e + 02± 3.85e + 02 = 4.42e + 02± 3.45e + 02 + 8.91e + 02± 3.44e + 02 +
f22 2.06e + 03 ± 3.17e + 02 3.99e + 03± 3.56e + 03 + 1.11e + 02± 9.60e + 01 - 3.22e + 03± 1.06e + 03 +
f23 1.12e + 04 ± 1.27e + 03 1.16e + 04± 1.25e + 03 + 1.09e + 04± 1.34e + 03 = 9.08e + 03± 1.05e + 03 -
f24 3.62e + 02 ± 2.14e + 02 1.20e + 03± 1.04e + 03 + 3.60e + 02± 9.64e + 00 - 2.88e + 02± 1.56e + 01 -
f25 3.79e + 02 ± 1.99e + 01 4.51e + 02± 1.27e + 02 + 3.97e + 02± 1.08e + 01 + 3.68e + 02± 1.48e + 01 -
f26 3.08e + 02 ± 2.97e + 02 5.15e + 02± 6.42e + 02 + 2.15e + 02± 4.95e + 01 - 3.55e + 02± 7.46e + 01 +
f27 1.28e + 03 ± 2.33e + 02 1.32e + 03± 3.32e + 02 = 1.82e + 03± 8.56e + 01 + 1.23e + 03± 1.49e + 02 =
f28 1.63e + 03 ± 2.22e + 03 3.40e + 03± 5.33e + 03 = 7.24e + 02± 1.08e + 03 - 5.05e + 02± 5.99e + 02 =

algorithm for continuous optimization. The employed algo-
rithmic structure and operators are the same as those used
by a MC approach previously proposed in literature. The
hyper-heuristic adaptive technique integrates, on the top of
the original memetic logic, a success-based adaptation. The
resulting framework appears to improve upon the original MC
approach and is competitive with modern meta-heuristics. This

study can be seen as an attempt to consider about algorithmic
design from a metaphor-free perspective and, in the specific
case, to show how some areas of MC and hyper-heuristics
contain essentially very similar ideas (if not even the same
idea).

TABLE IV. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REF.: SPAM-AOS) ON BBOB2010 [57] IN 100
DIMENSIONS.

SPAM-AOS SPAM CCPSO2 MDE-pBX
f1 2.42e − 13 ± 2.12e − 13 2.42e − 13± 2.13e − 13 = 4.12e − 13± 1.97e − 13 + 8.12e − 07± 3.91e − 06 +
f2 1.71e − 13 ± 1.55e − 13 2.84e − 13± 1.92e − 13 + 9.66e − 13± 1.77e − 12 + 3.22e − 02± 2.86e − 01 +
f3 1.04e + 02 ± 1.70e + 01 9.69e + 01± 1.51e + 01 - 8.09e + 00± 8.40e + 00 - 5.06e + 02± 9.57e + 01 +
f4 1.37e + 02 ± 2.01e + 01 1.34e + 02± 1.86e + 01 = 2.24e + 01± 1.31e + 01 - 8.32e + 02± 1.28e + 02 +
f5 4.93e − 08 ± 2.91e − 07 2.13e − 11± 8.26e − 12 - 2.41e − 04± 1.20e − 03 + 7.53e + 00± 1.01e + 01 +
f6 6.15e − 08 ± 7.12e − 08 1.79e − 11± 1.14e − 11 - 8.94e + 01± 4.02e + 01 + 3.36e + 01± 2.62e + 01 +
f7 5.26e + 01 ± 1.40e + 01 5.32e + 01± 1.36e + 01 = 3.45e + 02± 4.90e + 01 + 2.79e + 02± 7.50e + 01 +
f8 3.66e + 01 ± 1.11e + 01 3.49e + 01± 9.88e + 00 - 1.20e + 02± 3.42e + 01 + 1.78e + 02± 6.58e + 01 +
f9 4.39e + 01 ± 7.26e + 00 4.43e + 01± 6.96e + 00 + 1.06e + 02± 2.78e + 01 + 1.29e + 02± 3.80e + 01 +
f10 5.27e + 02 ± 1.50e + 02 4.83e + 02± 1.43e + 02 = 2.62e + 04± 6.64e + 03 + 1.51e + 04± 6.24e + 03 +
f11 8.72e + 01 ± 3.08e + 01 7.86e + 01± 2.53e + 01 = 5.45e + 02± 1.95e + 02 + 1.62e + 01± 6.78e + 00 -
f12 5.29e − 02 ± 1.98e − 01 2.61e − 02± 8.27e − 02 = 7.95e + 00± 1.20e + 01 + 2.70e + 01± 1.29e + 02 +
f13 1.06e + 00 ± 1.24e + 00 1.31e + 00± 1.78e + 00 = 3.16e + 00± 4.20e + 00 + 4.80e + 00± 9.83e + 00 +
f14 5.07e − 05 ± 6.32e − 06 3.17e − 05± 3.66e − 06 - 1.32e − 03± 2.34e − 04 + 2.21e − 03± 1.70e − 03 +
f15 2.75e + 02 ± 4.48e + 01 2.73e + 02± 4.25e + 01 = 1.33e + 03± 2.32e + 02 + 6.53e + 02± 9.63e + 01 +
f16 2.31e + 00 ± 8.27e − 01 2.42e + 00± 7.82e − 01 = 2.74e + 01± 4.27e + 00 + 1.35e + 01± 3.23e + 00 +
f17 8.55e + 00 ± 4.71e + 00 8.59e + 00± 4.52e + 00 = 8.65e + 00± 1.62e + 00 = 3.36e + 00± 4.02e − 01 -
f18 1.84e + 01 ± 1.15e + 01 1.95e + 01± 1.32e + 01 = 3.30e + 01± 6.61e + 00 + 1.19e + 01± 2.08e + 00 -
f19 1.96e + 00 ± 4.27e − 01 1.67e + 00± 2.95e − 01 - 7.90e + 00± 1.29e + 00 + 2.26e + 00± 6.47e − 01 +
f20 1.14e + 00 ± 1.09e − 01 1.25e + 00± 1.66e − 01 + 4.95e − 01± 6.73e − 02 - 2.12e + 00± 9.26e − 02 +
f21 3.89e + 00 ± 4.11e + 00 4.32e + 00± 6.61e + 00 = 3.36e + 00± 3.38e + 00 = 3.79e + 00± 5.07e + 00 =
f22 7.94e + 00 ± 9.28e + 00 4.93e + 00± 6.86e + 00 = 5.11e + 00± 5.83e + 00 - 8.94e + 00± 8.84e + 00 +
f23 8.23e − 01 ± 3.93e − 01 7.60e − 01± 3.66e − 01 = 2.52e + 00± 4.22e − 01 + 2.48e + 00± 9.31e − 01 +
f24 3.10e + 02 ± 6.43e + 01 3.19e + 02± 5.82e + 01 = 1.08e + 03± 1.53e + 02 + 3.48e + 02± 5.00e + 01 +

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized performance

C
um

ul
at

iv
e

fre
qu

en
cy

CCPSO2 MDE−pBX SPAM SPAM−AOS

Fig. 1. The Empirical Cumulative Distribution Function graph of the
normalized objective values for all algorithms, across all problem instances
and runs. It can be clearly observed that SPAM-AOS always achieves higher
cumulative frequency of lower objective values across all problem instances
and runs (better performance gains).

ACKNOWLEDGMENTS

E.K. Burke and M.G. Epitropakis would like to thank
EPSRC for their support for this work through grant
EP/J017515/1. This research is also supported by the Academy
of Finland, Akatemiatutkija 130600, “Algorithmic design is-
sues in Memetic Computing”.

REFERENCES

[1] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[2] A. Auger and O. Teytaud, “Continuous lunches are free!” in Pro-
ceedings of the 9th annual conference on Genetic and evolutionary
computation. ACM, 2007, pp. 916–922.

[3] R. Poli and M. Graff, “There is a free lunch for hyper-heuristics, genetic
programming and computer scientists,” in EuroGP, 2009, pp. 195–207.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA, USA: Addison-Wesley Publishing
Co., 1989.

[5] J. Du and R. Rada, “Memetic algorithms, domain knowledge, and
financial investing,” Memetic Computing, vol. 4, no. 2, pp. 109–125,
2012.

[6] J. Smith, “The co-evolution of memetic algorithms for protein structure
prediction,” in Recent Advances in Memetic Algorithms, ser. Studies in
Fuzziness and Soft Computing, W. Hart, N. Krasnogor, and J. Smith,
Eds. Springer, 2004, vol. 166, pp. 105–128.

[7] F. Neri and E. Mininno, “Memetic Compact Differential Evolution for
Cartesian Robot Control,” IEEE Computational Intelligence Magazine,
vol. 5, no. 2, pp. 54–65, 2010.

[8] F. Neri, C. Cotta, and P. Moscato, Handbook of Memetic Algorithms,
ser. Studies in Computational Intelligence. Springer, 2011, vol. 379.

[9] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution
Algorithm With Strategy Adaptation for Global Numerical Optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2,
pp. 398–417, 2009.

[10] R. Mallipeddi, S. Mallipeddi, and P. N. Suganthan, “Ensemble strategies
with adaptive evolutionary programming,” Information Sciences, vol.
180, no. 9, pp. 1571–1581, 2010.

[11] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic Approach to
Scheduling a Sales Summit,” in Proceedings of the Third International
Conference on Practice and Theory of Automated Timetabling, ser.
LNCS. Springer, 2000, vol. 2079, pp. 176–190.

[12] E. K. Burke, G. Kendall, and E. Soubeiga, “A Tabu Search hyperheuris-
tic for Timetabling and Rostering,” Journal of Heuristics, vol. 9, no. 6,
pp. 451–470, 2003.

[13] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu,
“A graph-based hyperheuristic for educational timetabling problems,”
European Journal of Operational Research, vol. 176, pp. 177–192,
2007.

[14] E. Özcan, B. Bilgin, and E. E. Korkmaz, “A comprehensive analysis
of hyper-heuristics,” Intelligent Data Analysis, vol. 12, no. 1, pp. 3–23,
2008.

[15] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R.
Woodward, “A classification of hyper-heuristic approaches,” in Hand-
book of Meta-heuristics, ser. International Series in Operations Research
& Management Science, M. Gendreau and J.-Y. Potvin, Eds. Springer
US, 2010, no. 146, pp. 449–468.

[16] E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg,
“Hyper-heuristics: An emerging direction in modern search technology,”
in Handbook of Metaheuristics, ser. International Series in Operations
Research & Management Science, F. Glover and G. A. Kochenberger,
Eds. Springer US, 2003, no. 57, pp. 457–474.

[17] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: a survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[18] A. Fialho, “Adaptive operator selection for optimization,” Ph.D. disser-
tation, Université Paris-Sud XI, Orsay, France, 2010.

[19] A. Fialho, L. D. Costa, M. Schoenauer, and M. Sebag, “Analyzing

bandit-based adaptive operator selection mechanisms,” Annals of Math-
ematics and Artificial Intelligence, vol. 60, no. 1-2, pp. 25–64, 2010.

[20] J. Maturana, . Fialho, F. Saubion, M. Schoenauer, F. Lardeux, and
M. Sebag, “Adaptive operator selection and management in evolutionary
algorithms,” in Autonomous Search, Y. Hamadi, E. Monfroy, and
F. Saubion, Eds. Springer Berlin Heidelberg, 2012, pp. 161–189.

[21] K. A. Dowsland, E. Soubeiga, and E. Burke, “A simulated annealing
based hyperheuristic for determining shipper sizes for storage and
transportation,” European Journal of Operational Research, vol. 179,
no. 3, pp. 759–774, 2007.

[22] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, “A reinforcement
learning-great-deluge hyper-heuristic for examination timetabling,” In-
ternational Journal of Applied Metaheuristic Computing, vol. 1, no. 1,
pp. 39–59, 2010.

[23] G. Acampora, M. Gaeta, and V. Loia, “Hierarchical optimization of
personalized experiences for e-learning systems through evolutionary
models,” Neural Computing and Applications, vol. 20, no. 5, pp. 641–
657, 2011.

[24] G. Acampora, J. M. Cadenas, V. Loia, and E. M. Ballester, “A multi-
agent memetic system for human-based knowledge selection,” IEEE
Transactions on Systems, Man, and Cybernetics, Part A, vol. 41, no. 5,
pp. 946–960, 2011.

[25] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S. Petrovic,
and E. K. Burke, “Hyflex: A benchmark framework for cross-domain
heuristic search,” in Evolutionary Computation in Combinatorial Op-
timization, ser. LNCS, J.-K. Hao and M. Middendorf, Eds. Springer
Berlin Heidelberg, 2012, vol. 7245, pp. 136–147.

[26] M. Misir, K. Verbeeck, P. D. Causmaecker, and G. V. Berghe, “An
intelligent hyper-heuristic framework for CHeSC 2011,” in Learning
and Intelligent Optimization, ser. LNCS, Y. Hamadi and M. Schoenauer,
Eds. Springer Berlin Heidelberg, 2012, pp. 461–466.

[27] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-Adaptive Mul-
timethod Search for Global Optimization in Real-Parameter Spaces,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
243–259, 2009.

[28] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-Based Algorithm
Portfolios for Numerical Optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 14, no. 5, pp. 782–800, 2010.

[29] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-
based algorithm selection for SAT,” Journal of Artificial Intelligence
Research, vol. 32, pp. 565–606, 2008.

[30] H. H. Hoos, “Programming by optimization,” Commun. ACM, vol. 55,
no. 2, pp. 70–80, 2012.

[31] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Tradeoffs in the empirical
evaluation of competing algorithm designs,” Ann. Math. Artif. Intell.,
vol. 60, no. 1-2, pp. 65–89, 2010.

[32] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artificial Intelligence, vol. 206, pp.
79–111, 2014.

[33] F. Neri and C. Cotta, “Memetic algorithms and memetic computing op-
timization: A literature review,” Swarm and Evolutionary Computation,
vol. 2, pp. 1–14, 2012.

[34] F. Neri, E. Mininno, and G. Iacca, “Compact particle swarm optimiza-
tion,” Information Sciences, vol. 239, pp. 96–121, 2013.

[35] F. Caraffini, F. Neri, and L. Picinali, “An analysis on separability for
memetic computing automatic design,” Information Sciences, vol. 265,
pp. 1–22, 2014.

[36] Y. S. Ong and A. J. Keane, “Meta-Lamarkian Learning in Memetic
Algorithms,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 2, pp. 99–110, 2004.

[37] J. E. Smith, “Coevolving Memetic Algorithms: A Review and Progress
Report,” IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 37, no. 1, pp. 6–17, 2007.

[38] N. Krasnogor and J. Smith, “A tutorial for competent memetic algo-
rithms: model, taxonomy, and design issues,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 5, pp. 474–488, 2005.

[39] ——, “Memetic Algorithms: The Polynomial Local Search Complexity
Theory Perspective,” J. Math. Model. Algorithms, vol. 7, no. 1, pp. 3–
24, 2008.

[40] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A
fast adaptive memetic algorithm for on-line and off-line control design
of PMSM drives,” IEEE Transactions on System Man and Cybernetics-
part B, vol. 37, no. 1, pp. 28–41, 2007.

[41] F. Neri, V. Tirronen, T. Kärkkäinen, and T. Rossi, “Fitness diversity
based adaptation in Multimeme Algorithms: A comparative study,” in
Proceedings of the IEEE Congress on Evolutionary Computation, 2007,
pp. 2374–2381.

[42] F. Neri, J. I. Toivanen, G. L. Cascella, and Y. S. Ong, “An Adap-
tive Multimeme Algorithm for Designing HIV Multidrug Therapies,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 4, no. 2, pp. 264–278, 2007.

[43] G. Iacca, F. Neri, E. Mininno, Y. S. Ong, and M. H. Lim, “Ockham’s
Razor in Memetic Computing: Three Stage Optimal Memetic Explo-
ration,” Information Sciences, vol. 188, pp. 17–43, 2012.

[44] F. Caraffini, F. Neri, G. Iacca, and A. Mol, “Parallel memetic structures,”
Information Sciences, vol. 227, no. 0, pp. 60 – 82, 2013.

[45] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and
M. N. Vrahatis, “Tracking differential evolution algorithms: An adaptive
approach through multinomial distribution tracking with exponential
forgetting,” in Artificial Intelligence: Theories and Applications, ser.
LNCS, Maglogiannis, Plagianakos, and Vlahavas, Eds. Springer, 2012,
no. 7297, pp. 214–222.

[46] M. Epitropakis, D. Tasoulis, N. Pavlidis, V. Plagianakos, and M. Vra-
hatis, “Tracking particle swarm optimizers: An adaptive approach
through multinomial distribution tracking with exponential forgetting,”
in IEEE Congress on Evolutionary Computation (CEC), 2012, pp. 1–8.

[47] D. Thierens, “An adaptive pursuit strategy for allocating operator
probabilities,” in Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation, ser. GECCO ’05. New York, NY,
USA: ACM, 2005, p. 15391546.

[48] ——, “Adaptive strategies for operator allocation,” in Parameter Setting
in Evolutionary Algorithms, ser. Studies in Computational Intelligence,
F. G. Lobo, C. F. Lima, and Z. Michalewicz, Eds. Springer Berlin
Heidelberg, 2007, no. 54, pp. 77–90, 00042.

[49] L.-Y. Tseng and C. Chen, “Multiple trajectory search for Large Scale
Global Optimization,” in Proceedings of the IEEE Congress on Evolu-
tionary Computation, 2008, pp. 3052–3059.

[50] H. H. Rosenbrock, “An automatic Method for finding the greatest or
least Value of a Function,” The Computer Journal, vol. 3, no. 3, pp.
175–184, 1960.

[51] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-
ming: Theory And Algorithms. Wiley-Interscience, 2006.

[52] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[53] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998, 02767.

[54] X. Li and X. Yao, “Cooperatively Coevolving Particle Swarms for Large
Scale Optimization,” Evolutionary Computation, IEEE Transactions on,
vol. 16, no. 2, pp. 210–224, 2012.

[55] S. Islam, S. Das, S. Ghosh, S. Roy, and P. Suganthan, “An Adaptive
Differential Evolution Algorithm With Novel Mutation and Crossover
Strategies for Global Numerical Optimization,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 2,
pp. 482–500, 2012.

[56] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernndez-Daz,
“Problem Definitions and Evaluation Criteria for the CEC 2013 Special
Session on Real-Parameter Optimization,” Zhengzhou University and
Nanyang Technological University, Zhengzhou China and Singapore,
Tech. Rep. 201212, 2013.

[57] N. Hansen, A. Auger, S. Finck, R. Ros et al., “Real-Parameter Black-
Box Optimization Benchmarking 2010: Noiseless Functions Defini-
tions,” INRIA, Tech. Rep. RR-6829, 2010.

[58] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[59] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

