
JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 1

Seeking Multiple Solutions: An Updated Survey on
Niching Methods and Their Applications

Xiaodong Li, Michael G. Epitropakis, Kalyanmoy Deb, Andries Engelbrecht

Abstract—Multi-Modal Optimization (MMO) aiming to locate
multiple optimal (or near-optimal) solutions in a single simulation
run has practical relevance to problem solving across many fields.
Population-based meta-heuristics have been shown particularly
effective in solving MMO problems, if equipped with specifically-
designed diversity-preserving mechanisms, commonly known as
niching methods. This paper provides an updated survey on nich-
ing methods. The paper first revisits the fundamental concepts
about niching and its most representative schemes, then reviews
the most recent development of niching methods, including novel
and hybrid methods, performance measures, and benchmarks
for their assessment. Furthermore, the paper surveys previous
attempts at leveraging the capabilities of niching to facilitate
various optimization tasks (e.g., multi-objective and dynamic
optimization) and machine learning tasks (e.g., clustering, feature
selection, and learning ensembles). A list of successful applica-
tions of niching methods to real-world problems is presented
to demonstrate the capabilities of niching methods in providing
solutions that are difficult for other optimization methods to
offer. The significant practical value of niching methods is clearly
exemplified through these applications. Finally, the paper poses
challenges and research questions on niching that are yet to be
appropriately addressed. Providing answers to these questions is
crucial before we can bring more fruitful benefits of niching to
real-world problem solving.

Index Terms—Niching methods, Multi-modal optimization,
Meta-heuristics, Multi-solution methods, Evolutionary computa-
tion, Swarm intelligence.

I. INTRODUCTION

THIS paper presents an updated survey on niching meth-
ods, which are Multi-Modal Optimization (MMO) meth-

ods aiming at locating multiple optimal solutions in a single
execution run. In many real-world situations, a decision maker
prefers to have multiple optimal (or close to optimal) solutions
at hand before making a final decision. If one solution is not
suitable, an alternative solution can be adopted immediately. A
good practical example is the well-publicized Second Toyota
Paradox [1], which shows that delaying decisions and pur-
suing multiple candidate solutions concurrently can produce
better cars faster and cheaper during the car manufacturer’s
production process.

Xiaodong Li is with the School of Science (Computer Science and
Software Engineering), RMIT University, VIC 3001, Melbourne, Australia,
email:xiaodong.li@rmit.edu.au.

Michael G. Epitropakis is with the Data Science Institute and the De-
partment of Management Science, Lancaster University Management School,
Lancaster University, Lancaster, UK, email: m.epitropakis@lancaster.ac.uk.

Kalyanmoy Deb is with the Department of Electrical and Computer
Engineering, Michigan State University, East Lansing, MI 48824, USA, email:
kdeb@egr.msu.edu.

Andries Engelbrecht is with the Department of Computer Science, School of
Information Technology, University of Pretoria, Pretoria 0002, South Africa,
email: engel@cs.up.ac.za.

The goal of locating multiple optimal solutions in a single
run by niching methods contrasts sharply with the goal of a
classic optimization method [2], which usually starts from an
initial single point and iteratively improving it, before arriving
at one final solution. Since it is not guaranteed that starting
at different initial points will arrive at different solutions with
multiple runs, classic optimization methods are not suited for
the purpose of locating multiple solutions. This goal is also
different from the usual single-optimum seeking mechanism
employed by a standard meta-heuristic method. In literature,
sometimes “multi-modal optimization” also refers to seeking a
single optimum on a multi-modal fitness landscape. To avoid
this confusion and to be more precise, in this paper we also
refer to niching methods as “multi-solution” methods.

Classic niching methods, including fitness sharing [3] and
crowding methods [4], were developed in the early 70s and
80s. In subsequent years, many niching methods have been
proposed. Some representative examples include deterministic
crowding [5], derating [6], restricted tournament selection
[7], parallelization [8], clustering [9], stretching and deflation
[10], [11], and speciation [12], [13]. Initially, niching methods
were developed for Evolutionary Algorithms (EAs). How-
ever, recently niching methods were also developed for other
meta-heuristic optimization algorithms [14], such as Evolu-
tion Strategies (ES), Particle Swarm Optimization (PSO), and
Differential Evolution (DE).

It is interesting to note that though several subareas of meta-
heuristics, such as evolutionary multi-objective optimization
(EMO) and constrained optimization, have gained widespread
acceptance going even beyond the meta-heuristic research
community, niching methods are perceived to have failed in
making a similar impact. Research on niching methods is seen
by many as a byproduct of research on population diversity
preservation, which is an important issue to deal with in
standard meta-heuristic algorithms. It is a common perception
that niching methods have limited use in real-world problem
solving because of the difficulties faced when applying them
(see Section V). Nevertheless, literature review suggests that
research on niching methods is continuing to demonstrate
remarkable success in facilitating various optimization tasks
across a wide range of real-world application areas. In recent
years, niching methods have been developed taking into ac-
count the unique characteristics of new meta-heuristic methods
such as PSO and DE, injecting renewed vitality to this classic
optimization topic. The resurgence of research interests in
MMO is clearly evident from the rapidly increasing number
of research publications in this area, as shown in Figure 1.
Seeking multiple optimal (or good sub-optimal) solutions in a

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 2

0

100

200

300

400

500

600

700

750

1980 1985 1990 1995 2000 2005 2010 2016

N
u
m

b
e
r

o
f
a
rt

ic
le

s
Query "multimodal optimization" OR niching niching

Fig. 1. Publication trends from the Elsevier Scopus library that contains
(in either meta-data, or full-text) the following keyword search queries: a)
“multimodal optimization” OR “niching”; and b) “niching”.

single optimization run has the following benefits:

• Finding multiple solutions may help to reveal hidden
properties or relations of the problem under study, e.g.,
the distribution of the solution set in the problem space.
This provides much richer information about the problem
domain than single-solution approaches.

• In some real-world problems, there may be factors that
are difficult to model mathematically, e.g., degrees of
difficulty in manufacturing, maintenance, and reliability.
Having multiple solutions with a similar quality will give
the decision maker more options for consideration, with
factors that are not captured in the mathematical model.

• Finding multiple solutions with a similar quality is a step
towards providing robust solutions, and also helping with
potential sensitivity studies of the given problem.

• Seeking multiple “good” solutions may increase the prob-
ability of a meta-heuristic algorithm finding the globally
optimal solution, since computational effort is not con-
centrated just in one area, but diverted to different regions
of the search space.

• Seeking multiple “good” solutions in different regions of
the search space may help with keeping a diverse pop-
ulation, counteracting the effect of genetic drift, i.e., the
population losing quickly its diversity and prematurely
converging to local optima.

The importance of niching methods and their applications
goes beyond just meta-heuristics. There are many problem
domains where the need to locate multiple solutions is preva-
lent, e.g., clustering, feature selection, machine learning, and
numerous engineering design problems. We feel that it is about
time to provide an updated survey on this classic subarea
of meta-heuristics. Although a few survey papers on niching
exist [15]–[18], little attention was given to niching methods
applied to optimization algorithms other than EAs, neither a
diverse range of real-world applications of niching methods.
This updated survey will differ from these previous surveys in
the following aspects:

• Instead of exhaustively covering existing niching methods
in the literature, we focus on providing an updated survey

of the most recent advancements in niching methods that
are inspired by the development of new meta-heuristics
such as PSO and DE.

• We emphasize more on revealing the intrinsic links
between niching and several topics in optimization and
machine learning, together with other different roles that
niching can play in these areas.

• We provide a more in-depth and detailed account of nich-
ing methods on MMO benchmark test function suites,
performance measures, difficulties in practical usage, and
research questions yet to be addressed.

• We aim to present a more holistic view on the current
state of niching methods and their applications through
a list of examples of real-world niching applications. It
is interesting to note that many researchers who work
on various MMO problems in their respective domain
areas are not aware of niching research done in other
disciplinary areas. This survey hopes to increase the
awareness of potential applications of niching methods
across domain boundaries.

This survey begins with background information covering
the fundamental concepts of niching and diversity, and their
places in population-based meta-heuristics. Section III de-
scribes the two most well-known niching methods which laid
the foundation to this field. Section IV then presents the most
recent advancements in niching methods, in particular those
from meta-heuristics other than EAs. Section V discusses the
difficulties faced by niching method users. This is followed by
discussions on designing benchmark functions for evaluating
niching methods and performance measures, in Section VI
and VII respectively. Section VIII provides a detailed account
of how niching is applied across several optimization and
machine learning areas, which are very revealing in terms of
the influence of niching in these areas. Section IX presents
a list of real-world applications. In the last two sections, we
present a list of open research questions and finish with our
concluding remarks.

II. BACKGROUND

Both notions of niche and species can be found in natural
ecosystems, where individual species must compete to survive
by taking on different roles. Different species or organisms
evolve to fill different niches (or subspaces) in the environ-
ment that can support different types of life. As remarked
in [19], “A niche can be defined generally as a subset of
resources in the environment. A species, on the other hand,
can be defined as a type or class of individuals that takes
advantage of a particular niche. Thus niches are divisions of
an environment, while species are divisions of the population.”
In biology, a species is defined as a group of individuals
of similar biological features capable of interbreeding among
themselves, but not with individuals from a different group.
Since each niche has a finite number of resources, which
must be shared among species members occupying that niche,
over time different niches and species emerge naturally in
the environment. Instead of evolving a single population of
individuals indifferently, natural ecosystems evolve different
species (or subpopulations) to fill different niches.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 3

Fig. 2. Examples of fitness landscape with multiple global peaks (optima); a)
Vincent 2D function with unevenly-spaced global peaks (left); b) Shubert 2D
function with multiple pairs of clustered global peaks (right). More examples
can be found in [21].

In optimization, we often use the term niche to refer to an
area of the fitness landscape where only one peak resides, and
species the subpopulation maintained around a specific peak
(or niche). It is common to use some sort of distance metric
to measure the closeness among individuals in the same or
different species.

In the following sub-sections, we first provide a definition
of MMO, then discuss the role of niching in meta-heuristics,
and how it differs from maintaining population diversity.

A. Multi-modal problem formulation

Niching methods are generally designed to solve Multi-
Modal Optimization (MMO) problems. A typical MMO prob-
lem can be expressed as follows: given a search domain X
and an objective function f that maps elements of X into a
real domain R (assuming maximization):

max
~x∈X

f(~x), (1)

where ~x is a n-dimensional vector (x1, . . . , xn). In MMO,
an optimization or niching method aims to locate all possible
~x∗ ∈ X (not just a single ~x∗), which obtain the maximum
possible objective value:

f(~x∗) ≥ f(~x),∀~x ∈ X . (2)

The mapped f values in the immediate vicinity of an ~x∗

should be all equal or lower than f(~x∗), which maximizes the
possible objective value. This is different from the notion of
local optima: although they are surrounded in their immediate
vicinity by inferior solutions, the fitness values of local optima
do not exceed the highest possible value [20]. Fig. 2 shows
examples of two multi-modal functions, Vincent 2D, which
has a fitness landscape of multiple global peaks with vastly
different basin widths, and Shubert 2D which has 9 pairs of
clustered global peaks, with each pair very close to each other,
but the distance between any pair being much greater.

It is also possible to relax the MMO definition to allow
locating globally optimal solutions, as well as “sufficiently”
good sub-optimal solutions.

B. Population diversity vs niching

In population-based meta-heuristics, population diversity
plays an important role in maintaining the meta-heuristic

algorithm’s capability to explore the search space. When the
population converges (or in other words the diversity loss is
at its greatest), the algorithm ceases to make further progress
in optimization. Usually, striking a good balance between
maintaining sufficient diversity (for exploration) and refining
the existing solution locally towards a good accuracy (for
exploitation) is a common goal for these population-based
meta-heuristic algorithms seeking to locate a single optimal
solution. Several definitions were provided by Mahfoud [22]
to characterize diversity in the context of EAs. In contrast,
niching not only helps to maintain a more diverse population,
but also helps to achieve an additional goal, that is to simulta-
neously locate more than one optimal solution. In retrospect,
the early works in EA have been largely dominated by efforts
to maintain good population diversity, and the development
of early niching methods was considered only as a byproduct
[23]. Niching was used largely for the purpose of preventing
the best candidate solution in the population from replacing
other similar quality but distant solutions.

Note that simply maintaining a high level of population
diversity is inadequate for niching, since a high population
diversity could be made up by random points. To induce
a niching effect, a niching method must allow convergence
locally to desired solutions, as well as diversity among these
solutions across different regions of the search space, achiev-
ing some sort of distributed convergence (see Fig. 3).

III. CLASSIC METHODS

This section briefly describes two classic niching methods,
fitness sharing and crowding, which had a significant influence
on the development of subsequent niching methods. For other
well-established niching methods, the readers are referred to
[15], [16].

A. Fitness Sharing and Crowding

One classic niching method is fitness sharing, probably
the most widely-used niching method. The sharing concept
was originally introduced by Holland [24] and then adopted
as a mechanism to divide the population into several sub-
populations based on the similarity of the individuals in the
population [3]. Fitness sharing was inspired by the notion of
‘sharing’ observed in nature, where an individual has only
limited resources that must be shared with other individuals
occupying the same niche in the environment. Fitness sharing
attempts to maintain a diverse population by degrading an in-
dividual’s fitness based on the presence of other neighbouring
individuals. During selection, many individuals in the same
neighbourhood would degrade each other’s fitness, thereby
discouraging the number of individuals occupying the same
niche. This in turn rewards individuals uniquely exploiting
different areas of the search space. Although fitness sharing
has proven to be a useful niching method, it has been shown
that it is rather difficult to set a proper value for the niche
radius σshare and the scaling factor α [25], [26] without any
prior knowledge of the problem. The computation of niches
can also be expensive if the population size is large [15]. Later
efforts in improving fitness sharing led to the development of

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 4

Algorithm 1: The pseudo-code of deterministic crowding.
1: Select two parents, p1 and p2 randomly, without

replacement
2: Generate two offspring c1 and c2
3: if d(p1, c1) + d(p2, c2) ≤ d(p1, c2) + d(p2, c1) then
4: if f(c1) > f(p1) then replace p1 with c1
5: if f(c2) > f(p2) then replace p2 with c2
6: else
7: if f(c2) > f(p1) then replace p1 with c2
8: if f(c1) > f(p2) then replace p2 with c1
9: end if

several niching techniques, including dynamic fitness sharing
[27], dynamic niching sharing [28], and clearing [12].

Whereas fitness sharing aims to downgrade the fitness
values of overcrowded individuals, the crowding method relies
on a competition mechanism between an offspring and its
close parents to allow adjusted selection pressure in favouring
individuals that are far apart and fit. The crowding method was
initially designed only to preserve population diversity and
prevent pre-mature convergence [4]. In crowding, an offspring
is compared to a small random sample taken from the current
population, and the most similar individual in the sample is
replaced. A parameter CF (crowding factor) is commonly
used to determine the size of the sample. Mahfoud [5] closely
examined both crowding and pre-selection and found that De
Jong’s crowding method was unable to maintain more than
two peaks of a five peaks fitness landscape due to stochastic
replacement errors. Mahfoud then made several modifications
to crowding to reduce replacement errors, restore selection
pressure, and also to eliminate the crowding factor parameter.
The resulting algorithm, deterministic crowding (DC), was
able to locate and maintain multiple peaks. One merit is that
DC does not assume any prior knowledge of the number of
peaks or niche radius as by the sharing methods. Algorithm 1
shows the basic procedure of DC.

B. Other methods

Many other forms of niching methods have been developed,
of which the most representative ones include restricted tour-
nament selection (RTS) [7], clearing [12], multi-national GA
[29], and speciation [13]. It is interesting to note that the
primary goal of the early niching methods was to preserve
population diversity, due to the constant battle of population
diversity loss in any standard evolutionary algorithm. Using
niching methods to find multiple optima was merely a byprod-
uct of this process (see [23], p.41). Nevertheless, subsequent
to early research, niching methods have been developed with
the primary goal of locating multiple optimal solutions.

IV. RECENT DEVELOPMENTS

As several meta-heuristics other than EAs become increas-
ingly popular, the properties of these new meta-heuristics have
been harnessed to induce niching behaviours. This section de-
scribes two most widely-used meta-heuristics, Particle Swarm

Optimization (PSO) and Differential Evolution (DE), and how
they can be modified to locate multiple solutions. Another in-
teresting development is the hybridization of niching methods
with local search methods.

A. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is an optimization tech-

nique inspired by the bird flocking behaviour [30]. In PSO,
each particle has its own memory of the best-known position
visited so far, and is able to share this information with other
particles in the swarm. At each iteration, each particle is
propelled towards the area defined by the stochastic average
of its own known best position and the swarm best position. It
was shown in [31] that basic versions of PSO do not have the
ability to locate multiple solutions. This is mainly due to the
loss of swarm diversity as particles converge. In order to niche,
approaches have to be implemented to promote exploration
and distributed convergence.

The notion of memory associated with each particle is
unique to PSO, and this property can be used to induce
niching behaviour: a swarm can be divided into two parts,
an explorer-swarm consisting of the current particles, and
a memory-swarm, comprising of only best-known positions
of individual particles. The explorer-swarm tends to explore
the search space more broadly, whereas the memory-swarm
tends to be more stable, providing an archive of best positions
found so far by the entire swarm. If a restricted communi-
cation topology (e.g., a ring topology) is mapped over the
particles of the swarm, these particles will be attracted only
towards its local neighbourhood best positions identified in the
topological space. As search proceeds, individual niches are
formed naturally around different optima, eventually leading to
locating multiple optima. Neighbourhood can be defined either
in the topological space or decision space. A few methods
explicitly exploit this PSO property, e.g., the ring-topology-
based niching PSO [32], and the Fitness-Euclidean distance
Ratio (FER-PSO) [33], where the fitness-Euclidean distance
ratio is used to drive particles towards their nearest-and-fittest
neighbourhood bests. In addition, an Euclidean distance-based
niching PSO, namely LIPS [34], forms niches by using the
nearest neighbours to each personal best in the Fully Informed
PSO (FIPS) [35].

Several methods proven to be useful to induce niching be-
haviour in the classic niching methods have also been adopted
to work with PSO. For example, a stretching method was used
in [36] to modify the fitness landscape to allow potentially
good solutions to be isolated from other particles, which is
similar to the effect of a derating method [6]. It was, however,
shown in [37] that the stretching PSO introduces false local
optima. The Derating Niche PSO was proposed to avoid these
false local optima. The idea of speciation was also adopted
in Speciation-based PSO (SPSO) [38], [39], where species
(or sub-swarms) can be adaptively formed around different
optima. However, a niche radius must be pre-specified in
order to define a species. Species are allowed to be merged
or separated into new ones at each iteration. Other similar
methods include NichePSO [40], nbest PSO [41], and Multi-
swarms [42].

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 5

To remove the need to pre-specify a niche radius, an Adap-
tive Niching PSO (ANPSO) [43] was developed to adaptively
determine this parameter by calculating population statistics
at each iteration. Another method that avoids the specification
of a niche radius parameter is a vector-based PSO (VPSO)
[44] where niche identification is done by carrying out vector
operations on the vector components of the velocity update.
A niche is determined by the radius value based on the
distance between the swarm best and the nearest particle with
a negative dot product (i.e., moving in an opposite direction).
Nevertheless, these methods tend to introduce new parameters
that may still be sensitive to the induction of niching effect.
For further information on recent PSO niching methods, the
reader can refer to [45], [46].

B. Differential Evolution

Unlike PSO, Differential Evolution (DE) [47] makes use
of scaled differences between randomly sampled pairs of
individuals in the population to determine how to modify
individual vectors to produce offspring. Considering that the
distribution of these sampled individual pairs reflects the
topographic feature of the search space, DE’s search behaviour
to some extent is self-adaptive to the fitness landscape of the
search space.

Rönkkönen introduced several interesting ideas for global
and local selection in DE [48], and how to use the local
selection concept for MMO [49]. Since this local selection
method requires only the offspring to compete against its own
parent, it is similar to deterministic crowding (DC) used in the
EA context. Like DC, it also has the advantage of not having
to specify additional niching parameters.

Further studies on the dynamics of DE [50], [51] reveal
that DE individuals are inclined to cluster around either local
or global optima after some iterations. A clustering tendency
statistic, H-measure, was suggested in [50] to measure the
varying degrees of clustering tendency that may occur for
six classical DE variants. Inspired by this observation, the
mutation operator in a classic DE variant DE/rand/1, was
altered to induce niching behaviour without the need of adding
any extra control parameter [52], namely the DE/nrand/1.
More specifically, instead of using the base vector in the usual
way, its nearest neighbour is always chosen as the actual base
vector:

vig+1 = xNNi
g + F (xr1g − xr2g), (3)

where xNNi
g is the nearest neighbour of the current individual

xig, r1, r2 ∈ {1, 2, . . . , NP}\{i} are random integers mutually
different and not equal to the running index i, and F is the
scaling factor. A similar nearest-neighbour idea for a niching
PSO was also adopted [34]. Intuitively, such mutation scheme
distributes the new offspring individuals to exploit the vicinity
of their nearest neighbours, while exploration is attained by the
scaled differences of randomly selected vectors. The proposed
mutation modification is generic and a family of new niching
DE variants can be produced, i.e., the DE/nrand family of
algorithms.

One appealing aspect of DE/nrand/1 is its simplicity in
implementation, requiring only addition of a few lines of codes

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Fig. 3. Snapshots of a simulation run of DE/nrand/1 on the Shubert 2D
function, at the 0th, 20th, 50th, and 100th iterations (clockwise).

to the standard DE source code1. Figure 3 illustrates a series of
snapshots of a simulation run of the DE/nrand/1 on the Shubert
2D function, after 0, 20, 50 and 100 iterations. One can clearly
observe a strong niching effect, i.e., clustering tendency of the
distributed individuals in the immediate vicinity of the global
optima (in other words, distributed convergence), during the
simulation run.

The ability of a niching method to locate and maintain a
large number of “optimal” solutions is heavily dependent on
the chosen population size. A dynamic archive niching DE,
(dADE/nrand/1), was introduced in [53] to overcome this
dependency issue. The dynamic archive mechanism, similar
to [54], along with a re-initialization strategy, was incorporated
into the DE/nrand family to achieve better efficiency in main-
taining high quality solutions found during the optimization
run while retaining the algorithm’s exploratory search power.

In a neighbourhood-based niching DE [55], similar vectors
within the neighbourhood of each base vector were used to
define the DE mutation operator in order to induce niching
behaviour. Here a difference vector is only generated from
“similar” individuals of the DE population rather than ran-
domly selected from the entire population. Similarity is defined
for each base vector as the niche, or sub-population, that
contains its m-th closest individuals in terms of Euclidean
distance. As such, each individual is mutated by randomly
selecting individuals within the niche of its base vector.
Note that these niches are overlapped with each other. The
parameter m is user-defined and needs to be fined-tuned
according to the problem characteristics. Three well-known
niching techniques were used in conjunction with this scheme,
namely crowding [5], speciation [12] and a modified version
of the fitness sharing technique [3], resulting in three different
niching DE variants.

Similarly, Biswas et al. [56] recently proposed three niching

1Price & Storn’s original implementation DeMat with the DE/nrand/1
modification by only using six new lines of MATLAB code. Available at:
https://github.com/mikeagn/DeMatDEnrand

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 6

DE variants by incorporating a probabilistic parent selection
scheme based on fitness and proximity information, known as
localized shared information. More specifically, parent selec-
tion in the mutation stage is replaced by a probabilistic scheme
to increase the probability of selecting fitter individuals that
are closer to the target vector. This is a trade-off that is usually
needed to induce a niching effect and minimize the tendency of
changing basin of attractions without hindering the exploratory
ability of the considered algorithm.

One key common characteristic of niching methods is the
incorporation of proximity information of the evolving popula-
tion into the search operations. Such information unavoidably
increases the complexity of the niching method. To mitigate
this issue, Zhang et al. [57] recently proposed a fast niching
algorithm to calculate approximate nearest neighbours using
a hashing mechanism (namely Locality Sensitive Hashing),
instead of exact pairwise distances within a solution set. In
this scheme, potential solutions are projected to a number of
buckets by a hash function, where similar solutions have a
higher probability to be assigned in the same buckets than
dissimilar ones. To induce a niching effect, search operations
in DE or PSO identify niches by solutions that lie in the
same bucket. The complexity of this fast niching algorithm is
proved to be linear to the population size. Another approach
using approximate neighbourhoods is the index-based neigh-
bourhoods in DE [51], which can also substantially decrease
the complexity of the niching algorithm.

Other recently proposed DE niching variants include parent-
centric mutation strategies combined with crowding [58] and
ensembles of niching techniques such as speciation [59].

C. Other meta-heuristics

The previous section on classic and recent niching methods
are far from complete. Obviously niching can be introduced to
other meta-heuristics as well, such as Artificial Immune Sys-
tems (AIS) [60], [61], Ant Colony Optimization (ACO) [62]–
[64], and Cultural Algorithms (CA) [65]. It is also possible
to induce niching behaviour through probabilistic modelling
building, e.g., via an Estimated Distributed Algorithm (EDA)
[66]. Please refer to [17] for further information on these
niching methods.

D. Hybrid methods

Hybrid methods combining meta-heuristics with local
search (or hill climbing), e.g., the quasi-Newton or Nel-
derMead simplex methods, have shown great promise for
global optimization [67]. These hybrids derive their enhanced
problem solving capability by harnessing both the explorative
search power of the meta-heuristics and the refining capability
(i.e., exploitation) offered by a local search method. They are
also commonly referred to as Memetic Algorithms (MA) [68].
Attempts have been made to hybridize niching methods with
local search procedures, in order to enhance convergence to
multiple optima, or in other words, distributed convergence.
For example, regression was incorporated into Speciation-
based PSO (i.e., rSPSO) for improving local convergence on
both static and dynamic multi-modal landscapes in [69]. The

faster and more accurate local convergence is achieved by
using regression computed based on only a handful of existing
individuals in the population. An EA hybridizing the Nelder-
Mead simplex method with clearing was proposed in [70].
Gradient descent was used in conjunction with a dynamic
niche sharing algorithm applying mating restriction [71], with
the results showing that this hybrid method performed better
than using niching methods alone. Quasi-Newton local search
was combined with a sharing GA as well as an artificial
immune algorithm by Ono, et al. [72], which resulted in
the hybridized algorithms outperforming those methods using
niching alone, on high-dimensional multi-modal functions.

V. DIFFICULTIES FACING NICHING

In this section we discuss several difficulties faced by the
users of niching methods.

A. Maintaining found solutions

In the early days of niching algorithm development, it
was observed that both sharing and crowding methods tended
to have difficulty in maintaining found optima. Subsequent
research aimed at designing enhanced niching methods so
that they can maintain found solutions stably until the end
of a run. Any loss of found optima would be considered a
failure. However, most researchers now accept the fact that the
population does not have to fully converge to single solutions
each corresponding to a single optimum. For example, we can
store the found solutions into an archive [53], [54], separate
from the running EA population (similar to a Tabu list), or we
can let the population reach some kind of equilibrium state,
as shown in [32]. In an equilibrium state, some individuals of
the population would keep oscillating around a stable state,
never reaching complete convergence.

B. Specifying niching parameters

The difficulty in specifying niche parameters has been a
major impediment to the use of niching methods in practice.
The most representative one is niche radius, which needs to
be specified to indicate how far apart the optima are from
each other. For some search landscapes, using a fixed uniform
niche radius is likely to fail, e.g., the Vincent function which
has irregular uneven-spaced optima (see Fig. 2 (left)).

Many attempts have been made specifically to address this
issue. They can be mostly categorized into the following:
• Attempting to find a single uniform niche radius. For ex-

ample, in [73], a radius function and a cooling procedure
similar to simulated annealing were adopted. However,
this method GAS (S for species) introduced several new
parameters that must be specified by a user. In [74], Dick
proposed a local sharing method where the information
about the fitness landscape during a run is first collected
and then subsequently used to adapt the niche radius
parameter value.

• Instead of using a fixed niche radius, several studies
suggest to adopt a variable niching radius. More specif-
ically, each niche has its own niche radius, independent

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 7

from other niches. Niching algorithms that follow this ap-
proach include multinational GA [29], forking GA [75],
Dynamic Niche Clustering [76], an adaptive extension
of NichePSO (ANPSO) [43], and a CMA-ES niching
algorithm [23], [77]. Inspired by the notion of self-
adaptation in evolution strategies, the CMA-ES niching
algorithm allows each individual to adapt its own niche
radius along with other adaptive strategy parameters.

• Avoiding to specify the niche radius. These methods
include tagging [78], deterministic crowding (DC) [5],
implicit fitness sharing [79], multi-national GA (MGA)
[29], population index-based niching PSO [32], vector-
based PSO (VPSO) [44], DE niching method using the
nearest neighbour of the current individual as the new
base vector [52], [53], and locally-informed PSO (LIPS)
using the nearest neighbours (measured in the decision
space) to each particle’s personal best [34]. DC randomly
selects two parents for crossover and mutation. The two
offspring generated are compared with the parents. The
children only replace the nearest parent if their fitness
values are greater. This process does not rely on any nich-
ing parameters. In MGA [29], instead of using a radius, a
hill-valley detection mechanism is required to take some
sampling points between two individuals to see if they
belong to the same peak. However, accurate detection
could be an expensive exercise. Further attempts were
made to improve the hill-valley detection but still required
pre-specification of certain parameters [80]. Recently, a
history-based topological speciation algorithm (HTS) was
developed to recursively construct a sequence of sample
points between two individuals using search history to
determine if they belong to the same species [81].

One common issue among the above-mentioned approaches
is that the removal of the niche radius parameter sometimes
unavoidably introduces new parameters, some of which may
still be difficult to specify in practice.

C. Scalability

Scalability of niching methods refers to two aspects: the
number of dimensions and the number of optima to be located.
Most of the niching methods in literature have been evaluated
on low-dimensional test functions. The scalability of several
niching methods including NichePSO has been studied [82],
[83], but only functions up to 5 dimensions were used. In [23],
the CMA-ES niching algorithm was only tested on functions
up to 10 dimensions. In the most recent CEC’2013 niching
benchmark suite [21], functions up to 20 dimensions were
proposed for the competition. It can be envisaged that the
performance of niching methods would degrade rapidly even
though they may perform well on low-dimensional problems.
Furthermore, if the number of optima increases, how does a
niching method respond? Another question that needs to be
answered here is whether all optima (global and good local
ones) need to be found. In particular, in real-life scenarios, the
number of optima is often unknown, in which case it seems
unreasonable to demand a niching method to locate all the
optima, e.g., millions of optima. Perhaps a niching method

with an adaptive population size, identifying a pre-specified
number of optima would be a more appropriate strategy.

Very few attempts have been made towards answering
these questions. One noticeable work on niching scalability is
given in [84]. The authors suggested that for low-dimensional
problems, we should use sequential niching methods [6], [11]
where collision avoidance mechanisms were implemented to
avoid finding the same optima repetitively. However, for high-
dimensional problems, parallel niching methods with auto-
matic restarts should be considered. As soon as an optimum
is found, it is archived, and its search capacity is reused by
randomly generating it anew. The authors named this process
as niche deactivation in [85], [86]. Using an archive seems
to be an effective mechanism dealing with this situation,
as also demonstrated in [54] and in [53], where adaptive
archive mechanisms combined with restart techniques can
substantially enhance the performance of the simple DE [53]
and PSO [54] variants.

D. Measuring performance

In many real-world situations, we do not always know the
true global optima, their objective values, or the number of
optima. This fact renders most existing performance metrics
on niching (as discussed in section VII) unusable. There are
still open research questions on how to design better metrics
for comparing niching methods more fairly, as well as being
more informative to the decision makers.

VI. BENCHMARK TEST FUNCTIONS

To empirically evaluate and compare the strengths and
weaknesses of different niching methods, it is important to
use a set of multi-modal test functions representing different
characteristics and various levels of difficulty. The earliest
work on designing multi-modal benchmark test functions was
carried out by Deb [87] in his master thesis, where, five 1
or 2-dimensional test functions, each with several peaks with
varying heights, equal or unequal distances between these
peaks, were defined. A more challenging multi-modal test
function with millions of local optima and 32 global optima
was proposed by Goldberg et al. [25].

Several efforts have been made to design multi-modal
test function generators. In particular, Rönkkönen et al. [88]
suggested some general guidelines when designing such multi-
modal function generators. The authors suggested that the
following desirable features should be considered for the
function generator: ease of use and being tunable; functions
transformable from separable to non-separable; regular and
irregular distributions of optima; controllable number of global
and local optima; scalable to different dimensions; software
easily expandable and freely available; and facilitating per-
formance measures. With these guidelines, Rönkkönen et al.
[48], [88] developed a versatile and flexible test function
generator based on several suitably-designed and tunable func-
tion families, such as the cosine and quadratic function
families. Functions can be rotated to a random angle, and
each dimension of a function can be stretched independently
using Bezier curves [89] to decrease regularity. The quadratic

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 8

family can be used to generate completely irregular landscapes
and allows the number of optima to be defined independently
of the number of dimensions. Any number of global and local
optima can be determined by a user. This function generator
is easily tunable and can offer a wide variety of landscape
characteristics and difficulties. Other efforts were also made
to produce irregular landscapes by using a Gaussian density
function [90] or generic hump functions [16].

Furthermore, Qu and Suganthan [91] proposed a set of
multi-modal test functions derived from some early work on
composition functions by Liang et al. [92]. These composition
functions, which are constructed by combining several simple
basis functions, can have a complex and rugged landscape,
posing difficulties to existing niching methods. Qu et al.
[93] constructed and adopted several simple and composition
multi-modal functions, making them scalable according to
dimensionality. Moreover, a suite of multi-modal constrained
test functions was proposed by Deb and Saha in [94]. The tech-
nical report on “Benchmark Functions for CEC’2013 Special
Session and Competition on Niching Methods for Multimodal
Function Optimization” [21] is the latest effort in providing
a unifying framework for evaluating and comparing niching
methods. The CEC’2013 competition is the first attempt to
create a common platform that encourages fair and easy
comparisons between different niching methods across a range
of difficulty levels. Twenty test functions ranging from simple
and low-dimensional to challenging and high-dimensional
were introduced. Some functions are scalable and tunable
in terms of dimensionality and the number of optima. Two
performance measures designed for evaluating and comparing
different niching methods, i.e., peak ratio and success rate, are
adopted as performance measures for this competition. Two
competitions CEC’2013 and CEC’2015 have been held using
this benchmark suite, which involve comparing more than 20
different participating niching algorithms. The top 5 entries
are provided in Table I2.

The winning entry of the CEC’2013 niching competition
was NEA2 (Niching with CMA-ES via NBC) [95], follow-
ing the basic idea of nearest-better-clustering (NBC). NBC
assumes that the best individuals in the population are usually
located at different basins of attractions, further away from
each other, and that the distances between them are usually
larger than the average distance between all individuals and
their nearest better neighbours. As such, NEA2 first creates
a spanning tree among all the individuals, and then connects
each individual to its nearest better neighbour (according to
fitness). Next it identifies the attractors (sub-populations) via
clustering done by cutting the longest edges of the graph that
are larger than the average distance between all individuals
and their nearest better neighbour. The connected sub-graphs
(clusters) that remain are the predicted attractors (or niches).
For each attractor, CMA-ES is employed (in parallel) to search
its neighbourhood. NEA2 has shown promising performance.
However, two parameters, i.e., the maximum number of niches
and the previously mentioned scale factor, must be specified

2For further information on the latest activities on niching methods, please
visit the IEEE CIS Task Force on Multi-modal Optimization website: http:
//www.epitropakis.co.uk/ieee-mmo/

TABLE I
TOP 5 ENTRIES FROM BOTH CEC’2013 AND 2015 NICHING METHODS

FOR MULTIMODAL FUNCTION OPTIMIZATION COMPETITIONS.

Algorithm Statistics Friedman’s Test
Median Mean St.D. Rank Score

NMMSO [20] 0.9885 0.8221 0.2538 1 16.1900
NEA2 [95] 0.8513 0.7940 0.2332 2 16.1150
LSEAEA [96] 0.9030 0.7477 0.3236 4 14.5050
dADE/nrand/1 [53] 0.7488 0.7383 0.3010 5 14.2450
LSEAGP [98] 0.7900 0.7302 0.3268 3 14.7550

by the user.
Some algorithmic analysis of the CEC’2013 competition

top-ranked entries in [20], [96] identified several techniques
offering significant advantages: self-adaption of search param-
eters [97], dynamic niche maintenance [53], and exploitative
local search [95]. Leveraging on these results, Fieldsend pro-
posed a more competent niching algorithm, NMMSO (Niching
Migratory Multi-swarm Optimiser) [20], winning the most
recent CEC’2015 niching competition. NMMSO employs mul-
tiple swarms, each having strong local search, fine-tuning its
local niche estimates. At each iteration, swarms which have
improved their niche estimate are paired with their closest
adjacent swarm to see if they should merge (thus preventing
duplication of labour). Niches in new areas are searched and
identified by splitting particles from existing swarms.

VII. PERFORMANCE MEASURES

Early studies of niching methods focused more on mea-
suring the difference between the distribution of a final EA
population from a goal-distribution [22]. Deb and Goldberg
proposed a Chi-square-like performance statistic [99], which
measures the deviation of the actual distribution of the individ-
uals Xi from the goal distribution mean µi (with variance δ2i)
in all the i sub-spaces (q niche sub-spaces plus the non-niche
subspace):

χ2 =

√√√√q+1∑
i=1

(
Xi − µi
δi

)2

, (4)

where Xi denotes the actual number of individuals in the ith
subspace (following a standard normal distribution), and µi
denotes the ideal number of individuals in the ith subspace,
with δ being the standard deviation. Both µi and δ can be
calculated from the known optima of a multi-modal function.
If the number of individuals in every niche equals the mean
of that niche, the χ2 value will be zero. The smaller χ2 value,
the better of the distribution is.

Instead of comparing two distributions such as χ2, a metric
that measures directly the quality of the final solutions as well
as the number of optima is the Maximum Peak Ratio (MPR)
[28]. Assuming maximization, the metric is defined as follows:

MPR =

∑q
i=1 fi∑q
i=1 Fi

, (5)

where fi denotes the best fitness value of the individual on
the ith peak (or optimum), and Fi represents the fitness value
of the ith peak. Assuming all q optima are known a priori.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 9

Basically, MPR defines the ratio of the sum of fitness values
of the obtained optima divided by the sum of fitness values
of the actual optima. MPR can be measured over time, to see
how a niching algorithm behaves in terms of niching formation
acceleration [23]. A logistic function can be used for curve-
fitting in order to obtain niching formation acceleration.

Success Rate (SR) can be used to measure the percentage
of runs in which all the optima are located. The success rate
is generally well-correlated with the MPR [23].

Both χ2 and MPR metrics (Equation (4) and (5)) assume
that the number and locations of the global optima are known
a priori, which is very unlikely in practice. An alternative
performance metric which does not make this assumption was
proposed in [84]:

sc′(P, θl, θu) =
∑

{xi∈P |f(xi)>θu}

f(xi)− θl
θu − θl

, (6)

where P denotes a set of candidate solutions. This metric
allows the decision maker to select a threshold internal [θl,
θu], covering a range of objective values that are regarded
as interesting. A fitness value above the lower bound θl can
be judged as interesting, whereas the upper bound θu is set
to some reachable fitness value. A real-world example in
bioinformatics is given in [85] to show how to set θl and
θu in practice. Given the interval [θl, θu], we can compute
the score sc′ (using Equation (6)), which is within [0, smax].
Note that smax may be unknown since the number of optima
is unknown.

When checking if an optimum is reached within a certain
level of accuracy, a threshold ε (usually some small value) can
be supplied. It is possible to evaluate a niching method over
a range of such threshold values [21], [85], so that its ability
to obtain optimal solutions accurately can be appropriately
assessed.

It may be possible to adapt some ideas from EMO perfor-
mance metrics for the purpose of MMO, since both MMO
and EMO methods emphasize the need to locate a set of
solutions. In [100], Preuss and Wessing provided a review
on both EMO and MMO performance metrics, discussing the
similarities and differences between the two. It remains unclear
about what would be the appropriate number of solutions in
a solution set, since in most real-world situations, neither a
too large nor a too small number is preferred by a decision
maker. The authors suggested a metric named Representative
5 Selection (R5S) to emphasize that a niching method should
aim to select around 5 diverse but good solutions. Clearly, none
of the studied indicators is perfect, requiring future effort to
improve and fine-tune their capabilities.

Recently, Mwaura et al. [101] provided a review of niching
algorithm performance measures. A derivative-based perfor-
mance measure that does not require any knowledge of the
number of optima nor their positions was proposed.

VIII. NICHING IN SPECIALIZED TASKS

Niching not only helps to provide more effective problem
solving in a diverse range of tasks (as shown in Fig. 4) but also
sometimes benefits itself from its interaction with these areas.
This section provides some examples of such interactions.

Fig. 4. Niching methods for a diverse range of problem solving.

A. Multi-objective Optimization

Multi-objective optimization using meta-heuristics has
gained great popularity in recent years. While MMO using
niching methods emphasizes the aspect of locating multiple
good but different solutions in the decision space, multi-
objective optimization using meta-heuristics (i.e., EMO) fo-
cuses more on the aspect of producing a set of trade-off
solutions in the objective space. What is in common here is
that both approaches produce a set of solutions from which
a decision maker can choose from. However, for niching
methods, solutions produced are not required to be in conflict.

When using a population-based meta-heuristic algorithm,
diversity maintenance is normally required for spreading out
solutions in the decision space. However, in EMO, it is the
objective space where solution diversity is most often and
explicitly maintained. This is usually done by using some
niching methods. An early example is the Niched-Pareto GA
(NGPA) [102], which is a multi-objective GA using a variant
of fitness sharing to maintain Pareto solution diversity in the
objective space. Another example is the crowding distance
metric used in NSGA-II [103]. Much attention has been
given to maintaining solution diversity in the objective space.
However, little attention has been given to how to maintain
solution diversity in the decision space, with only a few
exceptions, e.g., a probabilistic model-based EMO algorithm
was designed in [104] to explicitly promote diversity of
solutions in both decision and objective spaces simultaneously.
Another example is the Omni-Optimizer [105].

1) Niching in EMO: An interesting extension of NSGA-II
to a more generic optimization method, the so-called Omni-
Optimizer [105], allows degeneration of NSGA-II into a single
objective MMO method (i.e., a niching method). In this case,
a variable space crowding distance metric is used to encour-
age distant solutions in the decision space to remain in the
population (see Fig. 5). Consequently, distant solutions with
similar or equal objective function values will tend to survive
to the end of an optimization run. This would achieve the
same effect as niching. One highly desirable feature of Omni-
Optimizer is that it does not require any additional parameters
such as niche size or radius. Furthermore, Omni-Optimizer
can degenerate to a niching method for multi-objective MMO

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 10

Fig. 5. An example where two solutions that are close in the objective space
but their corresponding points in the decision space are further apart.

(MOMMO), capable of finding multiple Pareto-optimal fronts.
The versatility of Omni-Optimizer is remarkable.

2) Many-objective optimization: Research on many objec-
tives (i.e., more than 4 objectives) has been very active in
recent years. One popular approach is to use an Achievement
Scalarizing Function (ASF) [106] to decompose a multi-
objective problem into several subproblems using a set of
predefined weight vectors. A representative example of such
a decomposition-based method is MOEA/D [107]. A crucial
part of MOEA/D is to use a niching parameter to select two
solutions associated with neighbouring weight vectors, in order
to produce offspring solutions.

In the subsequently proposed NSGA-III [108], the original
framework of NSGA-II is kept, but significant changes have
been made to the selection operator. In NSGA-III, a set of
well-spread reference points is used for maintaining population
diversity. It is achieved by associating each individual in
the population with a reference point. More specifically, a
reference line is defined by drawing a line from a reference
point to the origin of the hyper-plane, then each individual
is considered to be associated with this reference line if the
individual has the closest perpendicular distance to it. Here,
niche preservation is done through favouring an individual
that is the closest to the reference line of each reference
point. NSGA-III does not require any additional parameter,
but niching is established by ensuring at least one available
population member is selected for each reference line. In
another variation of NSGA-III, namely U-NSGA-III [109],
which allows more than one individuals to be associated with
each reference line, a niching-based tournament selection is
used to introduce more selection pressure and better diversity
across multiple reference lines.

3) Multi-objective formulation of a multi-modal problem:
Deb and Saha demonstrated in [94], [110] that a single-
objective MMO problem can be transformed into a suitable
bi-objective optimization problem. Here, the second objective
can be defined based on two approaches: a) the gradient
information of the first objective function (to differentiate
those weak Pareto-front consisting of global and local mini-
mums, secondary derivatives are incorporated into this second
objective function); b) the number of sample neighbouring
solutions that are better than the current solution, which is
more practical when the gradient information is unavailable.
This bi-objective approach was shown to scale well with a

large number of optima (up to 500) and higher dimensionality
(up to 16 variables). To cut down the number of sample
neighbouring points required, as the number of dimensions
n grows, the Hooke-Jeeves search is adopted to evaluate
only 2n sample neighbouring points instead of 2n for the
second objective. This is one of a few studies which proposed
a number of scalable constraint multi-modal test problems.
Another method for defining the second objective is to use the
mean Euclidean distance of a solution from other individuals
of the population as proposed in [111], which has the merit of
avoiding the sampling evaluation cost. Furthermore, to avoid
cases where the multiobjectification of the problem does not
lead to conflicting objectives, Wang et al. [112] proposed a
transformation of a multi-modal problem to a multi-objective
optimization problem that always leads to conflicting objec-
tives based only on information from its decision variables and
fitness values.

4) Multi-modal formulation of a multi-objective problem:
It is shown in [113] that it may be beneficial to formulate
a multi/many objective optimization problem into a multi-
modal scalarized single-objective problem, where each Pareto-
optimal solution can be treated as an independent optimum of
a multi-modal fitness landscape. More specifically, multiple
reference points and weight vectors are used to obtain multiple
Pareto-optimal solutions, with each solution corresponding to a
single reference point and weight vector combination. A niche-
based EA (MEMO) is then used to find these Pareto-optimal
solutions in a single simulation run. One advantage of MEMO
is that there is no need to employ non-dominated sorting,
thereby making it more effective and computationally efficient
on many-objective problems. MEMO was found to provide
superior performance on both unconstrained and constrained
multi-objective optimization problems when compared with
existing state-of-the-art approaches.

5) Diversity in decision space: The popular CMA-ES [97]
was also integrated with niching methods [23], and was
further extended in [114] to solve multi-objective optimization
problems, with a particular emphasis on promoting deci-
sion space diversity. It was shown in [114] that the multi-
objective Niching-CMA method can produce a more diverse
set of efficient solutions (i.e., solutions in the decision space),
without sacrificing objective space diversity. One drawback
of this method is the introduction of several user-specified
parameters which may be difficult to tune. Another example
is provided in [115], where a niching method is explicitly
used to approximate Pareto-optimal solutions in both objec-
tive and decision spaces, resulting in finding two equivalent
Pareto-subsets of solutions for the TWO-ON-ONE problem.
If a standard NSGA-II was used, half of the Pareto-optimal
solutions would have been neglected, as the solutions tended
to converge to only one of the two niches.

B. Dynamic Optimization

In a dynamic environment where a problem itself may
change over time, the key objective of a meta-heuristic al-
gorithm is not only to locate the global optimum, but also to
keep track of the optimum or relocate a new global optimum

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 11

if the problem changes over time [116]. Merely maintaining
population diversity is often inadequate. Instead, some sort of
distributed convergence is more desirable.

Niching methods can be used to track or relocate the global
optimum more effectively. As observed in a number of multi-
population based methods [39], [42], [117], [118], a useful
strategy to ensure good tracking of the global optimum in a
dynamic environment, is to maintain multiple species at all
the optima found so far, regardless whether they are globally
or locally optimal. This is because in a dynamic environment,
optima may change in locations, heights, and/or shapes, as
well as the widths of the basins. By maintaining individual
species at each local optimum, it helps tremendously in cases
where such a local optimum turns into a global optimum.
A hierarchical clustering-based multi-population method was
shown in [119] to track changing optima, even without an
explicit mechanism for change detection.

To speed up local convergence, one could use individuals
in the population and their fitness evaluations accumulated
so far during the optimization run to estimate and predict
the positions of the changing optima. A simple regression
method with Speciation-based PSO (so called rSPSO) [69],
[120] shows significantly better performance than several other
multi-population methods such as mQSO [42]. The regression
method can be substituted by other surrogate models such as
Kriging [121]. Multiple surrogates can also be used to model
each niche on a multi-modal fitness landscape. As demon-
strated by Fieldsend [98], such localized surrogates using
only local information in the vicinity of a local optimum can
save a substantial amount of time than the more commonly-
used method that models the entire fitness landscape. The
readers are referred to [122] for more recent developments
on surrogate modelling.

As shown in [123], it is also possible to make use of the
directional information provided by the particles in a swarm
(namely a vector-based PSO) to adaptively form niches in
parallel in an effort to track multiple dynamically changing
optima in a dynamic environment.

C. Bilevel Optimization

Bilevel optimization involves two levels of optimization of
tasks, in which a feasible solution to the upper level opti-
mization corresponds to an optimal solution of the lower level
optimization problem. Such a nested structure of dependency
makes bilevel optimization problems very challenging [124].
Niching can be done for bilevel optimization at either the upper
or lower level, or both. In [125], several test functions have
been constructed to show that for any given set of variables
at the upper level, there may exist multiple global solutions
at the lower level. Niching in bilevel optimization makes
these problems extremely challenging to solve by any types of
optimization problems and should be of interest to algorithm
developers.

D. Clustering

The goal of clustering is to group data points into clusters
such that points in each cluster have a high degree of similarity,

whereas points in different clusters have a high degree of
dissimilarity. A similarity metric is often based on some
distance measured between these data points, e.g., Euclidean
or Mahalanobis distance can be used. Since both clustering and
niching share some common features, e.g., data points can be
seen as individuals or clusters as niches, it is not difficult to
see that clustering methods can be used to do niching, and
vice versa.

1) Clustering for niching: The classic k-means clustering
technique [126] can be easily incorporated into a niching
method to identify niches, assuming that the number of
clusters k is known a priori, or can be adapted. For example,
an adaptive k-means clustering-based niching algorithm was
developed in [9], with an aim in particular to improve the
efficiency of the sharing methods. Essentially, the k-means
clustering method is used to subdivide the population into
clusters (or niches), but instead of having to compute the
niche count parameter in the classic sharing method, the
distance between an individual to the centroid of each cluster
is calculated. Initial candidate points for centroids are critical
here, so before applying clustering, the algorithm first sorts
the population in descending order according to fitness values,
giving the best-fit individuals higher preferences as initial cen-
troids. The cluster centroids are recalculated and the number
of clusters updated at each iteration. Two new parameters
dmin and dmax (i.e., the minimum and maximum allowable
distances between any two niche centroids) were introduced
to determine an individual’s membership to a niche.

Among other clustering-based niching methods are dynamic
niche sharing [28], dynamic niche clustering [76], and dy-
namic fitness sharing [27]. The species conserving genetic al-
gorithm (SCGA) [13] and the topological species conservation
algorithm (TSC) [80] could also be considered as belonging
to this category. More advanced clustering methodologies that
do not need information on the number of clusters a priori
have been combined with EAs to simultaneously locate more
than one (global and/or local) optimal solutions [127], [128].

2) Niching for clustering: What is more interesting is that
a clustering problem can be formulated as an MMO problem,
and be handled by a niching method [129], [130]. Some
early attempts at using genetic algorithms for clustering [131]
indicated several challenges: the problem representation often
leads to an explosion of the search space as the data set grows
larger; the algorithms tend to be sensitive to initialization
and noise; crossover often produces meaningless solutions.
An unsupervised niche clustering algorithm (UNC) was pro-
posed to combat these aforementioned issues [130]. Instead
of formulating the clustering problem as searching through
a space for multiple clusters, UNC adopted a density-based
fitness function that would reach a maximum at every good
cluster center. As a result, the search space is substantially
reduced: if there are c clusters and S is the search space for
UNC, then the previous formulation searching for all c cluster
centers would have a search space of Sc.

To identify dense areas of a feature space as clusters, UNC
adopts the following density-based fitness function, assuming
that ci is the location of a hypothetical cluster center, and the
data set X has n features/dimensions, with N data points:

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 12

fi =

∑N
j=1 wij

δ2i
, (7)

where wij = exp(− d2ij
2δ2

i

), and d2ij = ||xj − ci||2 which
measures the Euclidean distance of the data point xj (where
j = 1, . . . , N) to the cluster center ci. The value of fi will
be high for points falling within the boundary of a cluster,
and low for points falling outside of the cluster. δ2i is a
measure of dispersion for the i-th cluster. This parameter is
crucial for determining the cluster boundaries. UNC measures
the goodness-of-fit of a model to just a part of the data.
Essentially this constructs a fitness landscape with multiple
peaks with each at a cluster center location. Both Euclidean
and Mahalanobis distance measures were used in order to more
accurately estimate the different shapes and the sizes of the
niches. Deterministic crowding was then used in conjunction
with a restricted mating scheme, to allow no assumption of
niche radii, or whether all peaks are equally distant. Through
experimentation on both synthetic data and a data set of
a real-world image segmentation problem, UNC was shown
to be less prone than non-niching techniques to premature
convergence, noise, and initialization. Several recent works
adopting a similar objective function based on the compactness
of points around a cluster center include [132] where a
dynamic niching GA was used, and [133] where LIPS [34]
was adopted. A distinct advantage of these methods is that they
do not require any prior knowledge of the number of clusters,
and can still perform reasonably well on several synthetic and
real data sets.

Niching can be used to enhance clustering and feature
selection simultaneously. It has been observed in [134] that
clustering is highly multi-modal, and a direct application of a
standard EA tends to result in getting stuck in local optima.
Furthermore, clustering on all features is not a good strategy
since not all features are relevant. It was shown in [134] that
niching could help preserve population diversity allowing the
EA to explore many optimal solutions in parallel, and as a
result, help to prevent the algorithm from getting stuck in
local optima. A unified criterion was designed as an objective
function to simultaneously optimize the clustering centers and
feature subset selection. In this case, a replacement group
was adopted to encourage mating among similar solutions
with the same number of clusters, and competition among
dissimilar solutions with different numbers of clusters. The
similarity measure is based on the Euclidean distance between
a pair of solutions in the phenotypic space. This niching
memetic algorithm, NMA CFS [134], shows clear advantages
over other methods that do not use niching or simultaneous
optimization of clustering and feature subset selection.

E. Feature selection

Feature selection plays an important role in pattern recog-
nition. Generally speaking, the aim of feature selection is
to choose features that allow us to discriminate patterns
belonging to different classes. The feature selection problem
can be defined as follows [135]: given an initial set F with

n features, search for a subset S ∈ F with k features that
maximize the mutual information I(C, S) between the class
label C and the subset S of selected features.

Feature selection algorithms are generally classified into two
categories, wrapper and filter methods. The wrapper method
makes use of a learning classifier’s performance to evaluate
the suitability of the feature subset, whereas the filter method
treats the selection of feature subsets as a pre-processing step,
independent from the learning classifier.

Traditional feature selection algorithms are mostly incre-
mental methods where features are selected one at a time,
according to criteria based on a single feature. This is limiting,
since in many real-world problems, several features acting
simultaneously may be relevant (i.e., epistasis), though an
individual feature may not. However, selection of subsets of
features can be done more efficiently by EAs. Since an optimal
subset might not be unique, there is merit to obtain all such
optimal subsets before making a final choice. We can consider
different optimal subsets of features as different optima on a
multi-modal fitness landscape, which can be searched using a
niching method. For example, a subset of the selected features
can be represented using a binary string where the i-th bit
being 1 indicates that the i-th feature is included in the subset,
whereas 0 indicates the feature is excluded. To evaluate the
goodness of the subset, the binary string is fed into a learning
classifier (e.g., neural network). The fitness function takes
into account the classifier accuracy term and the penalty for
selecting a large number of features [136].

A genetic algorithm (GA) guided normalized Mutual Infor-
mation Feature Selection (GAMIFS) algorithm was developed
in [137], which is a hybrid of the filter and wrapper feature
selection methods employing the GA and a neural network
classifier. The GA incorporated deterministic crowding into its
procedure to encourage searching for multiple optimal feature
subsets. In this niching scenario, a tournament selection is
run between the offspring and its nearest parent with respect
to Hamming distance. The winner is carried over to the
next iteration. A mutation operator is used to allow adding
a relevant feature or eliminating an irrelevant or redundant
feature from the individuals in the GA population. A mutated
individual survives only if it has a better fitness than that of
the original individual. The niching-based GAMIFS is able to
find individual relevant features as well as groups of relevant
features. On 4 data sets with up to 60 features, GAMIFS
outperformed those incremental search methods.

The effect of employing niching methods for solving feature
selection problems was also investigated in [138]. This study
combined the standard wrapper method with various niching
methods such as DFS [27] and r3pso [32] and their variants.
These feature selection wrapper variants were evaluated on 12
UCI data sets3, and the results were compared with the single-
optimum seeking GA and memetic algorithm, showing that the
niching variants outperformed the standard GA and memetic
algorithm in finding multiple accurate feature subsets.

3http://archive.ics.uci.edu/ml/datasets.html

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 13

F. Machine learning

Machine learning (ML) plays an increasingly important role
in data analytics these days because ML can make predictions
by learning from data. Many real-world problems are often
too large and complex to solve by a single machine learning
model. An effective approach may be to employ an ensemble
of learning models, each specializing in solving a subtask of a
much larger problem. Meta-heuristic algorithms can be used to
evolve a population of ML models, e.g., an ensemble of neural
networks [139] or a set of knowledge rules [140]. In such a
setting, niching methods are useful schemes for maintaining a
diverse population of learning models. The ensemble approach
is shown [141] not only performing much better, but also more
robust and generalizing better than those employing a single
ML model.

1) Evolving neural network ensembles: Several early works
by Yao and Liu [139], [142], [143] showed that a population
contains more information than a single individual in it. Such
information can be useful for improving the generalization
ability of a learning model. Furthermore, speciation (or nich-
ing) can be introduced to the population to evolve a diverse but
accurate set of specialist modules which can be then combined
to perform learning tasks. In [144], Liu et al., proposed
Evolutionary Ensembles with Negative Correlation Learning
(EENCL) to automatically determine the number of individual
neural networks in an ensemble. Fitness sharing was adopted
to promote diversity in the ensemble. If one training example
is learned correctly by n individual neural networks, then each
of these n neural networks receives a fitness value 1/n, and
the remaining neural networks in the ensemble receive zero
fitness. This procedure is repeated for all examples in the
training set. The final fitness of an individual is determined
by summing up its fitness values over all training examples.
The idea is to encourage niche formation by degrading the
original fitness of an individual neural network according to
the presence of other similar neural networks. The output
of the ensemble is normally determined by the majority of
the neural networks. This series of works on neural network
ensembles is nicely summarized in [141].

A PSO-based niching method (i.e., NichePSO [40]) was
used to evolve neural network ensembles (NNE) [145], more
specifically for training a group of neural networks for solving
a set of multivariate classification and regression tasks from
the UCI data sets. A typical goal for using an NNE, is
to evolve different neural networks to specialize in solving
complementary parts of a task, making niching methods a
good fit for this purpose. In the proposed NichePSO for
NNE (NPSOE), each sub-swarm is used to optimize the
connection weights of each constituent neural network. During
the training, the training data are fed into each neural network
as the input layer, and the output is compared with those
produced as the validation data is passed as the inputs. The
difference (or error) is used by NichePSO as the fitness value
for a particle in a sub-swarm. The weights for each neural
network are set according to the best particle in the sub-swarm.
In short, this research shows that NichePSO evolving an NNE,
i.e., NPSOE, is capable of exploiting the multivariate nature

of the multivariate classification and regression tasks. On the
majority of the tested UCI classification and regression data
sets, NPSOE was shown to produce much lower classification
and prediction errors than those by using the typical back-
propagation trained NNE.

2) Learning multiple rules from data: Data mining employs
many of the same techniques developed in ML. In data mining,
meta-heuristics can be used to extract knowledge such as rules
and use these rules to solve classification problems [140],
[146]. There are usually two different methods, the Michigan
approach where each individual encodes a single rule, and the
Pittsburgh approach where each individual represents multiple
rules, i.e., a rule set. Since it is often difficult to capture
the knowledge of a data set by a single rule, multiple rules
are often required. Directly evolving multiple rule sets from
scratch using the Pittsburgh approach is too challenging as
the search space is vast. However, for the Michigan approach,
niching methods can be used to evolve multiple different good
individuals that are required to produce a rule set.

An idea of token competition was proposed in [140] to
promote diversity in the rule population. Each record in the
training set is regarded as a resource (so-called token). If
an individual (or rule) is matched with a record, then this
individual can seize the token. The order of receiving tokens
is determined by the fitness values of the rules. A rule with a
high score (original fitness) means it can cover more records,
and at the same time, the other rules attempting to cover the
same rules (or niche) will have their fitness decreased since
they cannot compete with the stronger rule. An individual’s
fitness is modified according to the following:

fmodified = foriginal ∗ count/ideal, (8)

where foriginal is obtained from the objective function eval-
uation, count is the number of tokens actually seized by the
rule, and ideal is the total number of possible tokens that can
be seized by the rule. Token competition favours stronger rules
that cover more records, and weakens other rules that cannot
compete with them in the same niche areas.

Unlike classic niching methods such as fitness sharing or
crowding, token competition does not use a distance mea-
sure directly on the evolved rules, since it can be difficult
to determine how similar two rules are (e.g., produced by
using genetic programming). Token competition regards two
individuals as similar if they cover similar sets of records.

Building upon the above token competition idea, a
coevolution-based classification method was proposed in [147]
to coevolve individual rules and rule sets concurrently in
separate coevolving populations in order to further confine the
search space and produce quality rule sets efficiently.

3) Game playing: In [148] an evolutionary system was
proposed to automatically create a collection of specialist
strategies for a game playing system, relieving humans from
having to decide how to specialize. In the real-time Neuro-
evolution of Augmented Topologies (rtNEAT) embedded in
the NERO (Neuroevolving Robotic Operative) game [149],
speciation played a critical role in protecting topological
innovation by only allowing individual topology solutions (i.e.,

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 14

Fig. 6. Multiple optimal truss topologies obtained by using niching methods
[150]. Permission for using the figure has been obtained from the first author.

neural network structures) to compete within their own niches
instead of with the population at large.

IX. EXAMPLES OF REAL-WORLD APPLICATIONS

In this section, we provide a collection of various real-
world MMO problems where niching methods have been
successfully applied to (it is by no means a complete list).
Each example will be briefly described, focusing more on the
problem characteristics and the key motivation of adopting
niching methods in its specific context. Readers can follow
the references for further information:

Truss-structure optimization: Optimization of truss-
structures has been a well-researched area in engineering. It
usually involves finding solutions with optimal cross-sectional
size, topology, and configuration so that an overall minimum
weight can be achieved. Given a set of supports, concentrated
loads, and node points, the optimization method needs to
determine the optimal connectivity between elements, member
sizing, and node positions that will lead to a least weight
structure, satisfying all design constraints. An early work
by Deb and Gulati [151] showed that there existed multiple
different topologies with almost equal overall weight. More
specifically, this truss-structure optimization problem can be
considered multi-modal since it has a large number of possibly
different topological solutions. Luh and Lin [150] adopted
a two-staged approach: first topology optimization from a
given ground structure, and then size and shape optimization
employing the identified topology from the first stage. For the
topology optimization phase, they demonstrated that a binary
PSO with fitness sharing can be used to find multiple equally
good truss-structure solutions, as shown in Fig. 6.

Metabolic network modelling: A metabolic network is
modelled using Generalized Mass Action Kinetics formulation

(GMAKr) [85]. In this case, using a classic global optimization
algorithm can only find a single solution that is not biologically
plausible. Kronfeld et. al [85] showed that this problem is
highly multi-modal, and there exists a large number of high-
quality solutions which can be used together for sensitiv-
ity analysis. More specifically, some parameters are more
sensitive than others. This allows identification of parameter
values that are less sensitive as well as producing high-quality
solutions.

Drug molecule design: This problem was formulated as
a multi-objective constrained optimization problem and opti-
mized by NSGA-II [152]. A major issue here is that approx-
imation models must be used since it is difficult to obtain
accurate measures on objectives and constraints. Physical
experiments are necessary, and as a result, it is desirable
that after the optimization, a set of diverse solutions, i.e.,
molecules, can be obtained. An expert can then decide which
one of the solutions should be selected. With the assistance of
a niching based NSGA-II method, it is possible to substantially
enhance the diversity of solutions found in the design space.

Femtosecond laser pulse shaping problem: A CMA-ES
based niching method was employed to solve this Femtosec-
ond Laser Pulse Shaping problem in the field of Quantum
Control [153]. A distance metric was appropriately defined
between two feasible solutions, in order to discover multiple
unique pulse profiles of high quality. In this case, different
niches represent the same conceptual designs. The CMA-ES
based niching method achieved better alignment results than
the standard evolution-strategy method.

Job shop scheduling problem (JSSP): This is a classic
optimization problem studied extensively in literature. Perez
et al. [154], [155] represents one of the very few studies on
JSSP with a focus on identifying multiple solutions. JSSP are
typically multi-modal, presenting an ideal case for applying
niching methods. Their studies suggest that not only do
niching methods help to locate multiple good solutions, but
also to preserve the diversity more effectively than employing
a standard single-optimum seeking genetic algorithm.

Resource constrained multi-project scheduling problems
(RCMPSP): In this problem, multiple projects must be carried
out and completed using a common pool of scarce resources.
The difficulty is that one has to prioritize each project’s tasks
to optimize an objective function without violating both intra-
project precedence constraints and inter-project resource con-
straints. A decision maker can benefit from choosing between
different good scheduling solutions, instead of being limited
to only one. In addition, it is also much faster than reschedul-
ing. The deterministic crowding and clearing methods were
adopted in [156] to find multiple optimal scheduling solutions
for this problem. A library called RCMPSPlib was created
by the authors to report the benchmarking instances and the
multiple optima that have been found 4.

Automatic point determination: The problem of automatic
determination of point correspondence between two images
can be formulated as an MMO problem. A niching GA was
used to determine the automatic point correspondence between

4http://www.eii.uva.es/elena/RCMPSPLIB.htm

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 15

two images [157]. The niching GA method was able to
discover optimal solutions that are measured by the similarity
between patches of two images.

Seismological inverse problem: A niching GA was applied
to an inversion problem of teleseismic body waves for the
source parameters of an earthquake [158]. Here a distance
metric for waveform inversion was adopted for measuring the
similarity between solutions. The niching GA was shown to
be more efficient than a grid search in detecting several global
and local optima over a range of scales, representing the fault
and auxiliary planes.

Monte Carlo nonlinear filtering: Niching methods was
used to improve a Monte Carlo filtering algorithm when the
posterior distributions of problems are multi-modal [159]. The
standard Monte Carlo filters often suffer from the issue of
diversity loss due to the random nature of re-sampling. Niching
in Monte Carlo filtering helps to combat genetic drift. In this
case, the Kolmogorov-Smirnov metric was used as a measure
of the distance between two probability distributions [159].

Image segmentation: A Dynamic Niching Genetic Cluster-
ing algorithm (DNGA) was developed for image segmentation
without knowing the number of clusters [160]. The similarity
of each data point to all other points is defined by a similarity
function based on the density shape of the data points in the
vicinity of the chosen point. The DNGA was shown to be
insensitive to a range of niche radius values.

Clustering: A clustering-based niching EA was developed
in order to reconstruct gene regulatory networks from data
[161]. The niching method was used to maintain a better
solution diversity and to ultimately identify multiple alternative
networks. The decision maker can then make the final choice
based on further design considerations. In [162], the restricted
mating scheme (a classic niching method) was incorporated
into a memetic algorithm to carry out the task of web doc-
ument clustering. A clustering algorithm based on dynamic
niching with niche migration was shown in [132] to perform
well for the task of remote sensing image clustering. In
spatial data clustering [163], it was shown that the GA-based
spatial analysis technique could benefit from employing fitness
sharing to mitigate the effect of genetic drift, and as a result,
promote population diversity and encourage multiple optimal
solutions to be located in a single run.

Real-time tracking of body motion: A Niching Swarm Fil-
tering (NSF) algorithm was developed to address the problem
of real-time tracking of unconstrained full-body motion [164].
In this case, multiple significant global and local solutions of
the configuration distribution are found.

Competitive facilities location and design: In this facility
location problem, typically multiple global solutions need to
be obtained. A niching method named the Universal Evolu-
tionary Global Optimizer (UEGO) was shown to significantly
outperform simulated annealing and multi-start methods [165].

Solving systems of equations: One of the first niching PSO
algorithms were developed to solve systems of linear equations
[166]. Niching algorithms are suitable to solve systems of
equations due to systems of equations having multiple solu-
tions. Recently, it was shown in [167] that systems of nonlinear
equations can also be solved using niching techniques.

Protein structure prediction: A protein structure pre-
diction problem on the 3D Hydrophobic-Polar (HP) lattice
model was formulated as an MMO problem in [168], and
it was shown that even applying a simple niching method
outperformed the state-of-the-art approaches.

Induction motor design for electric vehicle: For design
optimization of induction motors (shape or structure), there
is a need to identify multiple optimal profiles. A niching
method with restricted tournament selection was used for this
task [169]. It is interesting to note the discussion in [169] on
the difficulty in formulating the problem as a multi-objective
optimization problem, e.g., it is difficult to directly apply
the geometrical constraints and manufacturing considerations,
such as stator coil winding. Furthermore, the transient tem-
perature rise of the stator coil could not be calculated during
the optimization. A better alternative is to carry out some
post-processing, i.e., using other criteria and the designer’s
experience to select the best solution from a list of optimal
solutions produced by a niching method.

Electromagnetic design: In [170], an electromagnetic de-
vice design problem was reformulated into an MMO problem
by deliberately not specifying a normative value for the
magnetic flux density attribute. Several niching methods were
used, locating typically 14 to 20 solutions, whereas a simple
GA just found one.

Other examples include a niching method for detecting
multiple nearly-optimal solutions for space mission design
problems [171] and a niching PSO method for identification
of static equilibria via potential energy optimization [172].
Though many more examples can be found in literature, we
hope the above list suffices to demonstrate a common pattern,
i.e., the importance and usefulness of niching methods going
beyond the boundaries of many application areas.

X. DISCUSSION AND OPEN QUESTIONS

From the previous sections, we can see that among many
real-world niching applications it is important to adopt a
domain-specific tailor-made distance (or similarity) measure,
as also noted in [23]. Another observation is that up to
now many optimization problems have been treated as single-
solution seeking problems, but actually can be reconsidered as
multi-solution seeking problems, e.g., data mining problems
approached by the token competition method [140]. Finding
multiple solutions using a niching method helps to reveal
some global properties of the problem under study, which is
information a user would not normally get by observing just
a single obtained solution in isolation. A decision maker can
compare and study these alternative solutions before making
a final choice, depending on the circumstance. Furthermore,
sometimes a multi-modal formulation may be easier hence
more viable than others, e.g., difficulties associated with a
multi-objective formulation [169]. In such a case, niching
methods can be used to first produce a set of alternative
solutions, which can be subsequently post-processed according
to criteria external to the formulation.

A common feature that can be observed among these PSO,
DE, and ES niching algorithms is the need to identify nearest

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 16

neighbourhood best points with respect to a current point in the
population, e.g., FER-PSO [33], LIPS [34], DE/nrand/1 [52],
dADE/nrand/1 [53], LoINDE [56], the DE using a proximity
mutation operator [50], the Local selection-based DE [49],
and NEA2 (Niching with CMA-ES via NBC) [95]. These
neighbourhood best points can be subsequently used to attract
individuals in their respective neighbourhoods, in order to
achieve the niching effect. It is obvious that only population-
based meta-heuristic algorithms can exploit this property.

Below we provide a list of open research questions on
niching methods, which we think are important to address in
future research:

• We need to rethink real-world problems with a view to
seeking multiple solutions. Clearly, this is an important
perspective that tends to be missed by many. For example,
we can formulate a typical clustering problem as an
MMO problem.

• Ensemble-based learning models have been shown to be
promising for non-stationary environments [173]. How
can we apply niching methods to maintain a good diver-
sity of learners in an ensemble? A broader question is
how to apply niching to uncertain environments.

• There is a general lack of theoretical understanding
of the distributed convergence behaviour among differ-
ent niching techniques, as also remarked in [17]. Such
theoretical studies can provide guidance for designing
effective niching techniques applicable to a wide range
of problem domains.

• Many new niching methods have been introduced and
revamped under different search paradigms. A common
problem is that these methods introduce additional pa-
rameters for tuning and they may be problem dependent.
How do we adapt and even remove these undesirable
parameters without sacrificing performance?

• How do we measure the performance of niching methods
in real-world settings, where the locations and number
of optima are usually unknown? The existing perfor-
mance metrics are clearly limited, as they make several
assumptions [101]. In addition, when there exist too many
solutions, it is perhaps unnecessary to find all of them
(see arguments made against too many choices in [174]).
Instead, it may be sufficient to attain a subset of solutions
with some desirable coverage and spread. This is in some
way, similar to the distribution requirement of a solution
set obtained by an EMO algorithm.

• There are not enough studies on high-dimensional MMO
problems, as shown in [110]. Though evidence exists that
shows niching is helpful for low-dimensional problems,
it is unclear how much benefit we can derive from doing
niching in high-dimensional cases.

• Many real-world problems are highly constrained and
of combinatorial nature. However, there lacks a sys-
tematic study on how existing niching methods, largely
designed for unconstrained optimization, should cope
with constraints. Deb and Saha provided a multi-modal
constrained test function suite in [94], [110], which may
help spur more research in this direction.

• Although there exist many studies hybridizing EA with
local search [67] for locating a single optimum, it seems
still rare to see niching methods hybridized with local
search [71]. It can be envisaged that niching combined
with local search has the potential to further enhance
convergence onto multiple optima.

Many interesting and challenging research ideas have also
been raised and discussed in [175], [176], which is the first
book published on the topic of niching methods.

XI. CONCLUDING REMARKS

Niching methods are powerful search methods that can pro-
duce multiple good solutions for a decision maker to choose
from. In this paper, we have revisited classic niching methods
in EAs and reviewed recent developments of niching methods
derived from other meta-heuristics. We have shown through
many real-world application examples that seeking multiple
good solutions is a common task across multiple disciplinary
areas, and niching methods can play an important role in
achieving this task. These examples of niching applications
present a more holistic picture of the impact by niching
methods, and hopefully this will provide a great impetus for
an even more wide-spread use of niching methods. We have
identified several open research questions. We hope these
questions will help to rejuvenate new interest and research
effort in this classic but important topic in the years to come.

Population-based optimization methods, such as evolution-
ary methods and other meta-heuristics methods, are attractive
due to their ability to store and process multiple and diverse
solutions from the search space. Maintaining diversity of a
population may not be automatic in all problems and therefore
the role of a niching operator becomes evident and invaluable
in a population-based optimization method. However, a nich-
ing operator needs an appropriate space (genotypic or pheno-
typic or both) and a distance metric to be effective. Although
most niching methods use at least one user-defined threshold
parameter to compare the distance metric with, recent efforts
have been focused on a parameter-less approach. This paper
has presented many different existing niching methodologies
that exploited (and reasonably so) the population approach of
evolutionary and other meta-heuristics methods.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their constructive comments which have greatly improved the
quality of this paper.

REFERENCES

[1] A. Ward, J. K. Liker, J. J. Cristiano, and D. K. Sobek, “The second
toyota paradox: How delaying decisions can make better cars faster,”
Sloan management review, vol. 36, no. 3, p. 43, 1995.

[2] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[3] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multimodal function optimization,” in Proc. of the Second International
Conference on Genetic Algorithms, J. Grefenstette, Ed., 1987, pp. 41–
49.

[4] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems.” Ph.D. dissertation, University of Michigan, 1975.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 17

[5] S. W. Mahfoud, “Crowding and preselection revisited,” in Parallel
problem solving from nature 2, R. Männer and B. Manderick, Eds.
Amsterdam: North-Holland, 1992, pp. 27–36. [Online]. Available:
citeseer.ist.psu.edu/mahfoud92crowding.html

[6] D. Beasley, D. R. Bull, and R. R. Martin, “A sequential
niche technique for multimodal function optimization,” Evolutionary
Computation, vol. 1, no. 2, pp. 101–125, 1993. [Online]. Available:
citeseer.ist.psu.edu/beasley93sequential.html

[7] G. R. Harik, “Finding multimodal solutions using restricted
tournament selection,” in Proc. of the Sixth International Conference
on Genetic Algorithms, L. Eshelman, Ed. San Francisco, CA: Morgan
Kaufmann, 1995, pp. 24–31. [Online]. Available: citeseer.ist.psu.edu/
harik95finding.html

[8] M. Bessaou, A. Pétrowski, and P. Siarry, Island Model Cooperating
with Speciation for Multimodal Optimization. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 437–446.

[9] X. Yin and N. Germay, “A fast genetic algorithm with sharing scheme
using cluster analysis methods in multi-modal function optimization,”
in the International Conference on Artificial Neural Networks and
Genetic Algorithms, 1993, pp. 450–457.

[10] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N.
Vrahatis, “Objective function ”stretching” to alleviate convergence to
local minima,” Nonlinear Analysis, vol. 47, no. 5, pp. 3419–3424, 2001.

[11] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of
all global minimizers through particle swarm optimization,” IEEE
Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 211–224,
June 2004.

[12] A. Pétrowski, “A clearing procedure as a niching method for genetic
algorithms,” in Proc. of the 3rd IEEE International Conference on
Evolutionary Computation, 1996, pp. 798–803.

[13] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species
conserving genetic algorithm for multimodal function optimization,”
Evolutionary Computation, vol. 10, no. 3, pp. 207–234, 2002.

[14] A. P. Engelbrecht, Computational Intelligence: An Introduction. New
York, NY, USA: Halsted Press, 2002.

[15] B. Sareni and L. Krahenbuhl, “Fitness sharing and niching methods
revisited,” IEEE Transactions on Evolutionary Computation, vol. 2,
no. 3, pp. 97–106, Sep. 1998.

[16] G. Singh and K. Deb, “Comparisons of multi-modal optimization
algorithms based on evolutionary algorithms,” in Proc. of the Genetic
and Evolutionary Computation Conference 2006 (GECCO’06), Wash-
ington, USA, 2006, pp. 1305–1312.

[17] S. Das, S. Maity, B.-Y. Qu, and P. N. Suganthan, “Real-parameter
evolutionary multimodal optimization - a survey of the state-of-the-
art,” Swarm and Evolutionary Computation, vol. 1, pp. 71–88, June
2011.

[18] O. M. Shir, “Niching in evolutionary algorithms,” Handbook of Natural
Computing: Theory, Experiments, and Applications, pp. 1035–1069,
2012.

[19] J. Horn, “The nature of niching: Genetic algorithms and the evolution
of optimal, cooperative populations,” Tech. Rep. UIUCDCS-R-97-
2000, 1997. [Online]. Available: citeseer.ist.psu.edu/horn97nature.html

[20] J. E. Fieldsend, “Running up those hills: Multi-modal search with the
niching migratory multi-swarm optimiser,” in Evolutionary Computa-
tion (CEC), 2014 IEEE Congress on, July 2014, pp. 2593–2600.

[21] X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark functions
for cec’2013 special session and competition on niching methods
for multimodal function optimization,” Technical Report, Evolutionary
Computation and Machine Learning Group, RMIT University, 2013.

[22] S. W. Mahfoud, “Niching methods for genetic algorithms,” Ph.D.
dissertation, Urbana, IL, USA, 1995. [Online]. Available: citeseer.ist.
psu.edu/mahfoud95niching.html

[23] O. M. Shir, “Niching in derandomized evolution strategies and its
applications in quantum control, phd thesis,” Ph.D. dissertation, Natural
Computing Group, LIACS, Faculty of Science, Leiden University,
2008.

[24] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, Michigan: University of Michigan Press, 1975.

[25] D. E. Goldberg, K. Deb, and J. Horn, “Massive multimodality,
deception, and genetic algorithms,” in PPSN 2, R. Männer and
B. Manderick, Eds. Amsterdam: Elsevier Science Publishers, B. V.,
1992. [Online]. Available: citeseer.ist.psu.edu/goldberg92massive.html

[26] P. J. Darwen and X. Yao, “A Dilemma for Fitness Sharing
with a Scaling Function,” in Proceedings of the Second IEEE
International Conference on Evolutionary Computation. Piscataway,
New Jersey: IEEE Press, 1995. [Online]. Available: citeseer.ist.psu.
edu/darwen95dilemma.html

[27] A. Della Cioppa, C. De Stefano, and A. Marcelli, “Where are the
niches? dynamic fitness sharing,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 4, pp. 453–465, Aug 2007.

[28] B. L. Miller and M. J. Shaw, “Genetic algorithms with dynamic
niche sharing for multimodal function optimization,” in Proceedings of
the 1996 IEEE International Conference onEvolutionary Computation,
May 1996, pp. 786–791.

[29] R. K. Ursem, “Multinational evolutionary algorithms,” in Proceedings
of the 1999 Congress on Evolutionary Computation, vol. 3, 1999, pp.
1633–1640.

[30] J. Kennedy and R. C. Eberhart, Swarm Intelligence. Morgan Kauf-
mann, 2001.

[31] A. P. Engelbrecht, B. S. Masiye, and G. Pampard, “Niching ability
of basic particle swarm optimization algorithms,” in Proceedings 2005
IEEE Swarm Intelligence Symposium, 2005. SIS 2005., Jun. 2005, pp.
397–400.

[32] X. Li, “Niching without niching parameters: Particle swarm opti-
mization using a ring topology,” IEEE Transactions on Evolutionary
Computation, vol. 14, no. 1, pp. 150–169, February 2010.

[33] ——, “Multimodal function optimization based on fitness-euclidean
distance ratio,” in Proc. of Genetic and Evolutionary Computation
Conference 2007, D. Thierens, Ed., 2007, pp. 78–85.

[34] B. Y. Qu, P. N. Suganthan, and S. Das, “A distance-based locally
informed particle swarm model for multimodal optimization,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 3, pp. 387–
402, June 2013.

[35] J. K. R. Mendes and J. Neves, “The fully informed particle swarm:
simpler, maybe better,” IEEE Trans. Evol. Comput., vol. 8, pp. 204–
210, Jun. 2004.

[36] K. E. Parsopoulos and M. N. Vrahatis, “Modification of the particle
swarm optimizer for locating all the global minima,” in Artificial Neural
Networks and Genetic Algorithms, V. Kurkova, N. Steele, R. Neruda,
and M. Karny, Eds. Springer, 2001, pp. 324–327.

[37] A. P. Engelbrecht, “Finding multiple solutions to unconstrained opti-
mization problems using particle swarm optimization,” in Proceedings
of the International Conference on Mathematical and Computational
Models, 2009.

[38] X. Li, “Adaptively choosing neighbourhood bests using species
in a particle swarm optimizer for multimodal function optimiza-
tion,” in Proc. of Genetic and Evolutionary Computation Conference
2004(LNCS 3102), K. Deb, Ed., 2004, pp. 105–116.

[39] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 4, pp. 440–458, August 2006.

[40] R. Brits, A. P. Engelbrecht, and F. van den Bergh, “A niching particle
swarm optimizer,” in Proc. of the 4th Asia-Pacific Conference on
Simulated Evolution and Learning 2002(SEAL 2002), 2002, pp. 692–
696.

[41] ——, “Solving systems of unconstrained equations using particle
swarm optimizers,” Proc. of the IEEE Conference on Systems, Man,
Cybernetics, pp. 102–107, October 2002.

[42] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[43] S. Bird and X. Li, “Adaptively choosing niching parameters in
a PSO,” in Genetic and Evolutionary Computation Conference,
GECCO 2006, Proceedings, Seattle, Washington, USA, July 8-12,
2006, M. Cattolico, Ed. ACM, 2006, pp. 3–10. [Online]. Available:
http://doi.acm.org/10.1145/1143997.1143999

[44] I. L. Schoeman and A. P. Engelbrecht, “Using vector operations to
identify niches for particle swarm optimization,” in Proc. of the 2004
IEEE Conference on Cybernetics and Intelligent Systems, Singapore,
2004, pp. 361–366.

[45] J. Barrera and C. A. C. Coello, “A review of particle swarm opti-
mization methods used for multimodal optimization,” in Innovations in
Swarm Intelligence, ser. Studies in Computational Intelligence, C. Lim,
L. Jain, and S. Dehuri, Eds. Springer Berlin Heidelberg, 2009, vol.
248, pp. 9–37.

[46] X. Li, “Developing niching algorithms in particle swarm optimization,”
in Handbook of Swarm Intelligence, ser. Adaptation, Learning, and
Optimization, B. Panigrahi, Y. Shi, and M.-H. Lim, Eds. Springer
Berlin Heidelberg, 2011, vol. 8, pp. 67–88.

[47] K. Price, “An introduction to differential evolution,” New Ideas in
Optimization, pp. 79–108, 1999.

[48] J. Rönkkönen, Continuous Multimodal Global Optimization with Dif-
ferential Evolution Based Methods. Acta Universitatis Lappeenran-
taensis 363, 2009.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 18

[49] J. Rönkkönen and J. Lampinen, “On determining multiple global
optima by differential evolution,” in Evolutionary and Deterministic
Methods for Design, Optimization and Control, ser. Proceedings of
Eurogen 2007, 2007, pp. 146–151.

[50] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and
M. N. Vrahatis, “Enhancing differential evolution utilizing proximity-
based mutation operators,” Evolutionary Computation, IEEE Transac-
tions on, vol. 15, no. 1, pp. 99–119, Feb 2011.

[51] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Multi-
modal optimization using niching differential evolution with index-
based neighborhoods,” in Proceedings of 2012 IEEE Congress on
Evolutionary Computation (CEC’12), June 2012, pp. 1–8.

[52] ——, “Finding multiple global optima exploiting differential evolu-
tion’s niching capability,” in Differential Evolution (SDE), 2011 IEEE
Symposium on, April 2011, pp. 1–8.

[53] M. G. Epitropakis, X. Li, and E. K. Burke, “A dynamic archive
niching differential evolution algorithm for multimodal optimization,”
in Evolutionary Computation (CEC), 2013 IEEE Congress on, June
2013, pp. 79–86.

[54] Z. Zhai and X. Li, “A dynamic archive based niching particle swarm
optimizer using a small population size,” in Proceedings of the Aus-
tralian Computer Science Conference (ACSC 2011), Jan 2011, pp. 1–7.

[55] B. Y. Qu, P. N. Suganthan, and J. J. Liang, “Differential evolution with
neighborhood mutation for multimodal optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 16, no. 5, pp. 601–614, Oct
2012.

[56] S. Biswas, S. Kundu, and S. Das, “Inducing niching behavior in differ-
ential evolution through local information sharing,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 2, pp. 246–263, April 2015.

[57] Y. Zhang, Y. j. Gong, H. Zhang, T. L. Gu, and J. Zhang, “Towards Fast
Niching Evolutionary Algorithms: A Locality Sensitive Hashing-Based
Approach,” IEEE Transactions on Evolutionary Computation, vol. PP,
no. 99, pp. 1–1, 2016.

[58] S. Biswas, S. Kundu, and S. Das, “An improved parent-centric mu-
tation with normalized neighborhoods for inducing niching behavior
in differential evolution,” IEEE Transactions on Cybernetics, vol. 44,
no. 10, pp. 1726–1737, Oct 2014.

[59] S. Hui and P. N. Suganthan, “Ensemble and arithmetic recombination-
based speciation differential evolution for multimodal optimization,”
IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 64–74, Jan 2016.

[60] S. Forrest, B. Javornik, R. Smith, and A. Perelson, “Using genetic
algorithms to explore pattern recognition in the immune system,”
Evolutionary Computation, vol. 1, no. 3, pp. 191–211, Sept 1993.

[61] L. N. de Castro and J. Timmis, “An artificial immune network for mul-
timodal function optimization,” in Evolutionary Computation, 2002.
CEC ’02. Proceedings of the 2002 Congress on, vol. 1, May 2002, pp.
699–704.

[62] Q. Yang, W. N. Chen, Z. Yu, T. Gu, Y. Li, H. Zhang, and J. Zhang,
“Adaptive Multimodal Continuous Ant Colony Optimization,” IEEE
Transactions on Evolutionary Computation, vol. PP, no. 99, pp. 1–1,
2016.

[63] M. Guntsch and M. Middendorf, Applying Population Based ACO to
Dynamic Optimization Problems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 111–122.

[64] D. Angus, Niching for Ant Colony Optimisation. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 165–188.

[65] M. Z. Ali and N. H. Awad, “A novel class of niche hybrid cultural algo-
rithms for continuous engineering optimization,” Information Sciences,
vol. 267, pp. 158–190, 2014.

[66] Q. Yang, W. N. Chen, Y. Li, C. L. P. Chen, X. M. Xu, and J. Zhang,
“Multimodal estimation of distribution algorithms,” IEEE Transactions
on Cybernetics, vol. PP, Available Online, no. 99, pp. 1–15, 2016.

[67] R. Chelouah and P. Siarry, “Genetic and neldermead algorithms
hybridized for a more accurate global optimization of continuous
multiminima functions,” European Journal of Operational Research,
vol. 148, no. 2, pp. 335–348, 2003, sport and Computers.

[68] X. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, “A multi-facet
survey on memetic computation,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 5, pp. 591–607, Oct 2011.

[69] S. Bird and X. Li, Computational Intelligence in Expensive Opti-
mization Problems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, ch. Improving Local Convergence in Particle Swarms by Fitness
Approximation Using Regression, pp. 265–293.

[70] L. Wei and M. Zhao, “A niche hybrid genetic algorithm for global op-
timization of continuous multimodal functions,” Applied Mathematics
and Computation, vol. 160, no. 3, pp. 649–661, 2005.

[71] J. X. Peng, S. Thompson, and K. Li, “A gradient-guided niching method
in genetic algorithm for solving continuous optimisation problems,” in
Intelligent Control and Automation, 2002. Proceedings of the 4th World
Congress on, vol. 4, 2002, pp. 3333–3338 vol.4.

[72] S. Ono, Y. Hirotani, and S. Nakayama, “Multiple solution search based
on hybridization of real-coded evolutionary algorithm and quasi-newton
method,” in 2007 IEEE Congress on Evolutionary Computation, Sept
2007, pp. 1133–1140.

[73] M. Jelasity and J. Dombi, “GAS, a concept on modeling species in
genetic algorithms,” Artificial Intelligence, vol. 99, no. 1, pp. 1–19,
1998. [Online]. Available: citeseer.ist.psu.edu/jelasity98gas.html

[74] G. Dick, “Automatic identification of the niche radius using spatially-
structured clearing methods,” in IEEE Congress on Evolutionary Com-
putation, July 2010, pp. 1–8.

[75] S. Tsutsui, J. Suzuri, and A. Ghosh, “Forking gas: Gas with search
space division schemes,” Evolutionary Computation, vol. 5, no. 1, pp.
61–80, 1997.

[76] J. Gan and K. Warwick, “Dyanmic niche clustering: a fuzzy variable
radius niching technique for multimodal optimisation in gas,” in Proc.
of the 2001 Congress on Evolutionary Computation. IEEE Press,
2001, pp. 215–222.

[77] O. M. Shir and T. Bäck, “Niche radius adaptation in the cms-es niching
algorithm,” in Parallel Problem Solving from Nature - PPSN IX, 9th
International Conference (LNCS 4193). Reykjavik, Iceland: Springer,
2006, pp. 142–151.

[78] W. M. Spear, “Simple subpopulation schemes,” in Proc. of 3rd Annual
Conf. on Evolutionary Programming. World Scientific, 1994, pp. 296–
307.

[79] P. J. Darwen and X. Yao, “Every niching method has its niche: Fitness
sharing and implicit sharing compared,” in Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature,
ser. PPSN IV. London, UK, UK: Springer-Verlag, 1996, pp. 398–407.

[80] C. Stoean, M. Preuss, R. Stoean, and D. Dumitrescu, “Multimodal op-
timization by means of a topological species conservation algorithm,”
IEEE Transactions on Evolutionary Computation, vol. 14, no. 6, pp.
842–864, Dec 2010.

[81] L. Li and K. Tang, “History-based topological speciation for multi-
modal optimization,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 1, pp. 136–150, Feb 2015.

[82] R. Brits, A. P. Engelbrecht, and F. van den Bergh, “Scalability of niche
pso,” in Swarm Intelligence Symposium, 2003. SIS ’03. Proceedings of
the 2003 IEEE, April 2003, pp. 228–234.

[83] ——, “Locating multiple optima using particle swarm optimization,”
Applied Mathematics and Computation, vol. 189, pp. 1859–1883, 2007.

[84] M. Kronfeld and A. Zell, “Towards scalability in niching methods,” in
Proceedings of the 2010 IEEE Congress on Evolutionary Computation
(CEC’10), July 2010, pp. 1–8.

[85] M. Kronfeld, A. Dräger, M. Aschoff, and A. Zell, “On the benefits of
multimodal optimization for metabolic network modeling,” in German
Conference on Bioinformatics (GCB 2009), LNCS, ser. Lecture Notes
in Informatics, S. P. F. S. Ivo Grosse, Steffen Neumann and P. Stadler,
Eds., vol. P-157, no. 978-3-88579-251-2. Halle (Saale), Germany:
German Informatics Society, Sep. 2009, pp. 191–200.

[86] F. Streichert, G. Stein, H. Ulmer, and A. Zell, “A clustering based
niching ea for multimodal search spaces,” in Artificial Evolution, ser.
Lecture Notes in Computer Science, P. Liardet, P. Collet, C. Fonlupt,
E. Lutton, and M. Schoenauer, Eds. Springer Berlin Heidelberg, 2004,
vol. 2936, pp. 293–304.

[87] K. Deb, “Genetic algorithms in multimodal function optimization (mas-
ter thesis and tcga report no. 89002),” Ph.D. dissertation, Tuscaloosa:
University of Alabama, The Clearinghouse for Genetic Algorithms,
1989.

[88] J. Rönkkönen, X. Li, V. Kyrki, and J. Lampinen, “A framework for
generating tunable test functions for multimodal optimization,” Soft
Computing, vol. 15, no. 9, pp. 1689–1706, 2011.

[89] P. Bezier, The Mathematical Basis of the UNISURF CAD System.
Newton, MA, USA: Butterworth-Heinemann, 1986.

[90] M. Gallagher and B. Yuan, “A general-purpose tunable landscape
generator,” Evolutionary Computation, IEEE Transactions on, vol. 10,
no. 5, pp. 590–603, Oct 2006.

[91] B.-Y. Qu and P. N. Suganthan, “Novel multimodal problems and
differential evolution with ensemble of restricted tournament selection,”
in Evolutionary Computation (CEC), 2010 IEEE Congress on, July
2010, pp. 1–7.

[92] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test
functions for numerical global optimization,” in Swarm Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 19

Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, June 2005, pp.
68–75.

[93] B. Y. Qu, J. J. Liang, Z. Y. Wang, Q. Chen, and P. N. Suganthan, “Novel
benchmark functions for continuous multimodal optimization with
comparative results,” Swarm and Evolutionary Computation, vol. 26,
pp. 23–34, 2016.

[94] K. Deb and A. Saha, “Finding multiple solutions for multimodal
optimization problems using a multi-objective evolutionary approach,”
in Proceedings of the 12th Annual Conference on Genetic and Evolu-
tionary Computation, ser. GECCO ’10. New York, NY, USA: ACM,
2010, pp. 447–454.

[95] M. Preuss, “Niching the cma-es via nearest-better clustering,” in
Proceedings of the 12th Annual Conference Companion on Genetic
and Evolutionary Computation, ser. GECCO ’10. New York, NY,
USA: ACM, 2010, pp. 1711–1718.

[96] J. E. Fieldsend, “Using an adaptive collection of local evolutionary
algorithms for multi-modal problems,” Soft Computing, vol. 19, no. 6,
pp. 1445–1460, Jun. 2015.

[97] A. Auger and N. Hansen, “Performance evaluation of an advanced
local search evolutionary algorithm,” in The 2005 IEEE Congress on
Evolutionary Computation, CEC 2005, vol. 2, Sept 2005, pp. 1777–
1784 Vol. 2.

[98] J. E. Fieldsend, “Multi-modal optimisation using a localised surro-
gates assisted evolutionary algorithm,” in Computational Intelligence
(UKCI), 2013 13th UK Workshop on, Sept 2013, pp. 88–95.

[99] K. Deb and D. E. Goldberg, “An investigation of niche and species
formation in genetic function optimization,” in Proc. of the Third
International Conference on Genetic Algorithms, J. Schaffer, Ed., 1989,
pp. 42–50.

[100] M. Preuss and S. Wessing, “Measuring multimodal optimization solu-
tion sets with a view to multiobjective techniques,” in EVOLVE - A
Bridge between Probability, Set Oriented Numerics, and Evolutionary
Computation IV, ser. Advances in Intelligent Systems and Computing,
M. e. a. Emmerich, Ed. Springer International Publishing, 2013, vol.
227, pp. 123–137.

[101] J. Mwaura, A. P. Engelbrecht, and F. V. Nepomuceno, “Performance
Measures for Niching Algorithms,” in Proceedings of the IEEE
Congress on Evolutionary Computation, 2016.

[102] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto
Genetic Algorithm for Multiobjective Optimization,” in Proc. of the
First IEEE Conference on Evolutionary Computation, IEEE World
Congress on Computational Intelligence, vol. 1. Piscataway, New
Jersey: IEEE Service Center, 1994, pp. 82–87. [Online]. Available:
citeseer.ist.psu.edu/horn94niched.html

[103] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[104] A. Zhou, Q. Zhang, and Y. Jin, “Approximating the set of pareto-
optimal solutions in both the decision and objective spaces by an esti-
mation of distribution algorithm,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 1167–1189, Oct 2009.

[105] K. Deb and S. Tiwari, “Omni-optimizer: A generic evolutionary algo-
rithm for single and multi-objective optimization.” European Journal
of Operational Research, vol. 185, no. 3, pp. 1062–1087, 2008.

[106] A. P. Wierzbicki, “The use of reference objectives in multiobjective
optimization,” in Multiple Criteria Decision Making Theory and Ap-
plication, ser. Lecture Notes in Economics and Mathematical Systems,
G. Fandel and T. Gal, Eds. Springer Berlin Heidelberg, 1980, vol.
177, pp. 468–486.

[107] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm
based on decomposition,” Evolutionary Computation, IEEE Transac-
tions on, vol. 11, no. 6, pp. 712–731, Dec 2007.

[108] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point based non-dominated sorting approach,
part i: Solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[109] H. Seada and K. Deb, “Effect of selection operator on nsga-iii in single,
multi, and many-objective optimization,” in 2015 IEEE Congress on
Evolutionary Computation (CEC), May 2015, pp. 2915–2922.

[110] K. Deb and A. Saha, “Multimodal optimization using a bi-objective
evolutionary algorithm,” Evolutionary Computation, vol. 20, no. 1, pp.
27–62, Mar. 2012.

[111] A. Basak, S. Das, and K. C. Tan, “Multimodal optimization using
a biobjective differential evolution algorithm enhanced with mean
distance-based selection,” IEEE Transactions on Evolutionary Com-
putation, vol. 17, no. 5, pp. 666–685, Oct 2013.

[112] Y. Wang, H. X. Li, G. G. Yen, and W. Song, “Mommop: Multiobjective
optimization for locating multiple optimal solutions of multimodal
optimization problems,” IEEE Transactions on Cybernetics, vol. 45,
no. 4, pp. 830–843, April 2015.

[113] C. Tutum and K. Deb, “A multimodal approach for evolutionary multi-
objective optimization (memo): Proof-of-principle results,” in Evolu-
tionary Multi-Criterion Optimization, ser. Lecture Notes in Computer
Science, A. Gaspar-Cunha, C. Henggeler Antunes, and C. C. Coello,
Eds. Springer International Publishing, 2015, vol. 9018, pp. 3–18.

[114] O. M. Shir, M. Preuss, B. Naujoks, and M. Emmerich, “Enhancing
decision space diversity in evolutionary multiobjective algorithms,” in
Proceedings of the 5th International Conference on Evolutionary Multi-
Criterion Optimization, ser. EMO ’09. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 95–109.

[115] O. Kramer and H. Danielsiek, “Dbscan-based multi-objective niching
to approximate equivalent pareto-subsets,” in Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO ’10. New York, NY, USA: ACM, 2010, pp. 503–510.

[116] J. Branke, Evolutionary Optimization in Dynamic Environments. Nor-
well, MA, USA: Kluwer Academic Publishers, 2001.

[117] X. Li, J. Branke, and T. Blackwell, “Particle swarm with speciation and
adaptation in a dynamic environment,” in Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
’06. New York, NY, USA: ACM, 2006, pp. 51–58.

[118] T. Blackwell, J. Branke, and X. Li, Swarm Intelligence: Introduction
and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, ch. Particle Swarms for Dynamic Optimization Problems, pp.
193–217.

[119] C. Li and S. Yang, “A general framework of multipopulation methods
with clustering in undetectable dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 16, no. 4, pp. 556–577, Aug
2012.

[120] S. Bird and X. Li, “Using regression to improve local convergence,” in
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, Sept
2007, pp. 592–599.

[121] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “Design and
analysis of computer experiments,” Statistical Science, vol. 4, no. 4,
pp. 409–423, 11 1989.

[122] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, 2011.

[123] I. Schoeman and A. Engelbrecht, “Niching for dynamic environments
using particle swarm optimization,” in Simulated Evolution and Learn-
ing, ser. Lecture Notes in Computer Science, T.-D. Wang, X. Li, S.-H.
Chen, X. Wang, H. Abbass, H. Iba, G.-L. Chen, and X. Yao, Eds.
Springer Berlin Heidelberg, 2006, vol. 4247, pp. 134–141.

[124] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications
(Nonconvex Optimization and Its Applications). Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

[125] A. Sinha, P. Malo, and K. Deb, “Test problem construction for
single-objective bilevel optimization,” CoRR, vol. abs/1401.1942,
2014. [Online]. Available: http://arxiv.org/abs/1401.1942

[126] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” Berkeley, Calif., pp. 281–297, 1967.

[127] D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis, “Clustering in
evolutionary algorithms to efficiently compute simultaneously local and
global minima,” in 2005 IEEE Congress on Evolutionary Computation,
vol. 2, Sept 2005, pp. 1847–1854.

[128] V. P. Plagianakos, “Unsupervised clustering and multi-optima evolu-
tionary search,” in 2014 IEEE Congress on Evolutionary Computation
(CEC), July 2014, pp. 2383–2390.

[129] D. Zaharie, “Density based clustering with crowding differential evolu-
tion,” in 2011 13th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2005). Los Alamitos,
CA, USA: IEEE Computer Society, Sept 2005, pp. 343–350.

[130] O. Nasraoui, E. Leon, and R. Krishnapuram, “Unsupervised niche
clustering: Discovering an unknown number of clusters in noisy data
sets,” in Evolutionary Computation in Data Mining, ser. Studies in
Fuzziness and Soft Computing, A. Ghosh and L. Jain, Eds. Springer
Berlin Heidelberg, 2005, vol. 163, pp. 157–188.

[131] V. V. Raghavan and K. Birchard, “A clustering strategy based on a
formalism of the reproductive process in natural systems,” in Pro-
ceedings of the 2Nd Annual International ACM SIGIR Conference on
Information Storage and Retrieval: Information Implications into the
Eighties, ser. SIGIR ’79. New York, NY, USA: ACM, 1979, pp.
10–22.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 20

[132] D.-X. Chang, X.-D. Zhang, C.-W. Zheng, and D.-M. Zhang, “A robust
dynamic niching genetic algorithm with niche migration for automatic
clustering problem,” Pattern Recognition, vol. 43, no. 4, pp. 1346–
1360, 2010.

[133] H.-L. Ling, J.-S. Wu, Y. Zhou, and W.-S. Zheng, “How many clusters?
a robust pso-based local density model,” Neurocomputing, vol. 207, pp.
264–275, 2016.

[134] W. Sheng, X. Liu, and M. Fairhurst, “A niching memetic algorithm for
simultaneous clustering and feature selection,” IEEE Transactions on
Knowledge and Data Engineering, vol. 20, no. 7, pp. 868–879, July
2008.

[135] R. Battiti, “Using mutual information for selecting features in super-
vised neural net learning,” IEEE Transactions on Neural Networks,
vol. 5, no. 4, pp. 537–550, Jul. 1994.

[136] F. Z. Brill, D. E. Brown, and W. N. Martin, “Fast generic selection of
features for neural network classifiers,” IEEE Transactions on Neural
Networks, vol. 3, no. 2, pp. 324–328, Mar 1992.

[137] P. A. Estevez, M. Tesmer, C. A. Perez, and J. M. Zurada, “Normalized
mutual information feature selection,” IEEE Transactions on Neural
Networks, vol. 20, no. 2, pp. 189–201, Feb 2009.

[138] S. Kamyab and M. Eftekhari, “Feature selection using multimodal
optimization techniques,” Neurocomputing, vol. 171, pp. 586–597,
2016.

[139] Y. Liu and X. Yao, “Simultaneous training of negatively correlated
neural networks in an ensemble,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 29, no. 6, pp. 716–725,
Dec 1999.

[140] M. L. Wong and K. S. Leung, Data Mining Using Grammar-Based
Genetic Programming and Applications. Norwell, MA, USA: Kluwer
Academic Publishers, 2000.

[141] X. Yao and M. M. Islam, “Evolving artificial neural network ensem-
bles,” IEEE Computational Intelligence Magazine, vol. 3, no. 1, pp.
31–42, Feb. 2008.

[142] X. Yao and Y. Liu, “Making use of population information in evolu-
tionary artificial neural networks,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 28, no. 3, pp. 417–425, Jun
1998.

[143] ——, “A new evolutionary system for evolving artificial neural net-
works,” IEEE Transactions on Neural Networks, vol. 8, no. 3, pp.
694–713, May 1997.

[144] Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with negative
correlation learning,” IEEE Transactions on Evolutionary Computation,
vol. 4, no. 4, pp. 380–387, Nov 2000.

[145] C. Castillo, G. Nitschke, and A. Engelbrecht, “Niche particle swarm
optimization for neural network ensembles,” in Advances in Artificial
Life. Darwin Meets von Neumann, ser. Lecture Notes in Computer
Science, G. Kampis, I. Karsai, and E. Szathmary, Eds. Springer Berlin
Heidelberg, 2011, vol. 5778, pp. 399–407.

[146] K. C. Tan, Q. Yu, C. M. Heng, and T. H. Lee, “Evolutionary computing
for knowledge discovery in medical diagnosis,” Artificial Intelligence
in Medicine, vol. 27, pp. 129–154, 2003.

[147] K. C. Tan, Q. Yu, and J. H. Ang, “A coevolutionary algorithm for rules
discovery in data mining,” International Journal of Systems Science,
vol. 37, no. 12, pp. 835–864, 2006.

[148] P. J. Darwen and X. Yao, “Speciation as automatic categorical mod-
ularization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 2, pp. 101–108, Jul 1997.

[149] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevo-
lution in the nero video game,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 6, pp. 653–668, Dec 2005.

[150] G.-C. Luh and C.-Y. Lin, “Optimal design of truss-structures using
particle swarm optimization,” Computers and Structures, vol. 89, no.
23-24, pp. 2221–2232, Dec. 2011.

[151] K. Deb and S. Gulati, “Design of truss-structures for minimum weight
using genetic algorithms,” Finite Elements in Analysis Design, vol. 37,
pp. 447–465, 2001.

[152] J. W. Kruisselbrink, A. Aleman, M. T. M. Emmerich, A. P. IJzerman,
A. Bender, T. Baeck, and E. van der Horst, “Enhancing search space
diversity in multi-objective evolutionary drug molecule design using
niching,” in Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO’09. New York, NY, USA:
ACM, 2009, pp. 217–224.

[153] O. M. Shir, C. Siedschlag, T. Bäck, and M. J. J. Vrakking, “Niching
in evolution strategies and its application to laser pulse shaping,” in
Proceedings of the 7th International Conference on Artificial Evolution,
ser. EA’05. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 85–96.

[154] E. Pérez, F. Herrera, and C. Hernández, “Finding multiple solutions
in job shop scheduling by niching genetic algorithms,” Journal of
Intelligent Manufacturing, vol. 14, no. 3–4, pp. 323–339, 2003.

[155] E. Prez, M. Posada, and F. Herrera, “Analysis of new niching genetic
algorithms for finding multiple solutions in the job shop scheduling,”
Journal of Intelligent Manufacturing, vol. 23, no. 3, pp. 341–356, 2012.

[156] E. Pérez, M. Posada, and A. Lorenzana, “Taking advantage of solv-
ing the resource constrained multi-project scheduling problems using
multi-modal genetic algorithms,” Soft Computing, vol. 20, no. 5, pp.
1879–1896, 2016.

[157] K. Delibasis, P. A. Asvestas, and G. K. Matsopoulos, “Multimodal ge-
netic algorithms-based algorithm for automatic point correspondence,”
Pattern Recognition, vol. 43, no. 12, pp. 4011–4027, Dec. 2010.

[158] K. D. Koper and M. E. Wysession, “Multimodal function optimization
with a niching genetic algorithm: A seis-mological example,” Bulletin
of the Seismological Society of America, vol. 89, pp. 978–988, 1999.

[159] A. Bienvenüe, M. Joannides, J. Bérard, E. Fontenas, and O. François,
“Niching in monte carlo filtering algorithms,” in Artificial Evolution,
ser. Lecture Notes in Computer Science, P. Collet, C. Fonlupt, J.-K.
Hao, E. Lutton, and M. Schoenauer, Eds. Springer Berlin Heidelberg,
2002, vol. 2310, pp. 19–30.

[160] D. Chang, Y. Zhao, and Y. Xiao, “A robust dynamic niching genetic
clustering approach for image segmentation,” in Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation,
ser. GECCO ’11. New York, NY, USA: ACM, 2011, pp. 1077–1084.

[161] C. Spieth, F. Streichert, N. Speer, and A. Zell, “Clustering-based
approach to identify solutions for the inference of regulatory networks,”
in Proc. of the IEEE Congress onEvolutionary Computation 2005
(CEC’05, vol. 1. Edinburgh, UK: IEEE Press, Sept 2005, pp. 660–667.

[162] C. Cobos, C. Montealegre, M. F. Mejia, M. Mendoza, and E. Leon,
“Web document clustering based on a new niching memetic algorithm,
term-document matrix and bayesian information criterion,” in IEEE
Congress on Evolutionary Computation, July 2010, pp. 1–8.

[163] R. Sahajpal, G. V. Ramaraju, and V. Bhatt, “Applying niching genetic
algorithms for multiple cluster discovery in spatial analysis,” in In-
telligent Sensing and Information Processing, 2004. Proceedings of
International Conference on, 2004, pp. 35–40.

[164] Z. Zhang and H.-S. Seah, “Real-time tracking of unconstrained full-
body motion using niching swarm filtering combined with local opti-
mization,” in 2011 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), June 2011, pp.
23–28.

[165] J. L. Redondo, J. Fernández, I. Garcı́a, and P. M. Ortigosa, “Solving
the multiple competitive facilities location and design problem on the
plane,” Evolutionary Computation, vol. 17, no. 1, pp. 21–53, Mar. 2009.

[166] R. Brits, A. P. Engelbrecht, and F. v. d. Bergh, “Solving systems of
unconstrained equations using particle swarm optimization,” in 2002
IEEE International Conference on Systems, Man and Cybernetics,
vol. 3, Oct. 2002, pp. 6 pp. vol.3–.

[167] W. Song, Y. Wang, H. X. Li, and Z. Cai, “Locating multiple optimal
solutions of nonlinear equation systems based on multiobjective opti-
mization,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 3, pp. 414–431, June 2015.

[168] K.-C. Wong, K.-S. Leung, and M.-H. Wong, “Protein structure pre-
diction on a lattice model via multimodal optimization techniques,”
in Proceedings of the 12th Annual Conference on Genetic and Evolu-
tionary Computation, ser. GECCO ’10. New York, NY, USA: ACM,
2010, pp. 155–162.

[169] D.-H. Cho, H.-K. Jung, and C.-G. Lee, “Induction motor design for
electric vehicle using a niching genetic algorithm,” IEEE Transactions
on Industry Applications, vol. 37, no. 4, pp. 994–999, Jul 2001.

[170] B. Sareni, L. Krahenbuhl, and A. Nicolas, “Niching genetic algorithms
for optimization in electromagnetics. i. fundamentals,” IEEE Transac-
tions on Magnetics, vol. 34, no. 5, pp. 2984–2987, Sep 1998.

[171] O. Schutze, A. Lara, C. Coello Coello, and M. Vasile, “On the detection
of nearly optimal solutions in the context of single-objective space
mission design problems,” Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering, vol. 225, no. 11,
pp. 1229–1242, 2011.

[172] S. Spreng, “Identification of static equilibria via potential energy
optimization, master thesis,” 2010.

[173] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Magazine, vol. 10, no. 4, pp. 12–25, Nov 2015.

[174] B. Schwartz, The Paradox of Choice: Why More Is Less. Harper
Perennial, 2004.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 21

[175] M. Preuss, Multimodal Optimization by Means of Evolutionary Al-
gorithms, ser. Natural Computing Series. Springer International
Publishing, 2016.

[176] ——, “Review of “multimodal optimization by means of evolutionary
algorithms” by mike preuss,” SIGEVOlution, vol. 8, no. 3, pp. 8–9,
Mar. 2016.

Xiaodong Li (M03-SM07) received his B.Sc. degree
from Xidian University, Xi’an, China, and Ph.D.
degree in information science from University of
Otago, Dunedin, New Zealand, respectively. Cur-
rently, he is a Professor at the School of Sci-
ence (Computer Science and Software Engineer-
ing), RMIT University, Melbourne, Australia. His
research interests include evolutionary computation,
neural networks, data analytics, multi-objective op-
timization, multi-modal optimization, and swarm
intelligence. He serves as an Associate Editor of

the IEEE Transactions on Evolutionary Computation, Swarm Intelligence
(Springer), and International Journal of Swarm Intelligence Research. He is a
founding member of IEEE CIS Task Force on Swarm Intelligence, a vice-chair
of IEEE Task Force on Multi-modal Optimization, and a former chair of IEEE
CIS Task Force on Large Scale Global Optimization. He is the recipient of
2013 ACM SIGEVO Impact Award and 2017 IEEE CIS “IEEE Transactions
on Evolutionary Computation Outstanding Paper Award”.

Michael G. Epitropakis received his B.Sc., M.Sc.
and Ph.D. degrees from the Department of Mathe-
matics, University of Patras, Greece. Currently, he
is a Lecturer (Assistant Professor) at the Data Sci-
ence Institute, and the Department of Management
Science, Lancaster University Management School,
Lancaster University, UK. His current research inter-
ests include operational research, computational in-
telligence, evolutionary computation, computational
search and optimization, multi-objective and multi-
modal optimization, and search-based software en-

gineering. He has published more than 35 journal and conference papers,
and serves as a reviewer for numerous high-impact journals and first tier
conferences. His research has currently attracted over 580 citations with h-
index 11. He is a founding member and chair of the IEEE CIS Task Force
on Multi-modal Optimization.

Kalyanmoy Deb is Koenig Endowed Chair Pro-
fessor at Department of Electrical and Computer
Engineering in Michigan State University, USA.
Prof. Deb received his Bachelor’s degree from In-
dian Institute of Technology Kharagpur in 1985
and masters and doctoral degrees from University
of Alabama, Tuscaloosa, USA in 1989 and 1991,
respectively. Prof. Deb’s research interests are in
evolutionary optimization and their application in
multi-criterio optimization, modeling, and machine
learning. He has been a visiting professor at various

universities across the world including IITs in India, Aalto University in
Finland, University of Skovde in Sweden, Nanyang Technological University
in Singapore. He was awarded Infosys Prize, TWAS Prize in Engineering
Sciences, CajAstur Mamdani Prize, Distinguished Alumni Award from IIT
Kharagpur, Edgeworth-Pareto award, Bhatnagar Prize in Engineering Sci-
ences, and Bessel Research award from Germany. He is fellow of IEEE,
ASME, and three Indian science and engineering academies. He has published
over 450 research papers with Google Scholar citation of over 92,000
with h-index 100. He is in the editorial board on 20 major international
journals. More information about his research contribution can be found from
http://www.egr.msu.edu/∼kdeb.

Andries Engelbrecht received the Masters and PhD
degrees in Computer Science from the University
of Stellenbosch, South Africa, in 1994 and 1999
respectively. He is Professor in Computer Science
at the University of Pretoria, and serves as Head
of the department. He holds the position of South
African Research Chair in Artificial Intelligence,
and leads the Computational Intelligence Research
Group. His research interests include swarm intelli-
gence, evolutionary computation, neural networks,
artificial immune systems, and the application of

these paradigms to data mining, games, bioinformatics, finance, and difficult
optimization problems. He has published over 300 papers in these fields
and is author of two books, Computational Intelligence: An Introduction and
Fundamentals of Computational Swarm Intelligence.

Prof Engelbrecht is very active in the international community, annually
serving as reviewer for over 20 journals and 10 conferences. He is an
Associate Editor of the IEEE Transactions on Evolutionary Computation,
IEEE Transactions on Neural Networks and Learning Systems, the Swarm
Intelligence Journal, and Engineering Applications of Artificial Intelligence.
He was co-guest editor of special issues of the IEEE Transactions on
Evolutionary Computation and of the Swarm Intelligence journal. He served
on the international program committee and organizing committee of a number
of conferences, organized special sessions, presented tutorials, and took part
in panel discussions. He was the founding chair of the South African chapter
of the IEEE Computational Intelligence Society. He is a member of the
Evolutionary Computation Technical Committee and the Neural Networks
Technical Committee, and serves as member of a number of task forces.

