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Abstract—Clustering of high dimensional data is a very impor-
tant task in Data Mining. In dealing with such data, we typically
need to use methods like Principal Component Analysis and Pro-
jection Pursuit, to find interesting lower dimensional directions
to project the data and hence reduce their dimensionality in a
manageable size. In this work, we propose a new criterion of
direction interestingness, which incorporates information from
the density of the projected data. Subsequently, we utilize
the Differential Evolution algorithm to perform optimization
over the space of the projections and hence construct a new
hierarchical clustering algorithmic scheme. The new algorithm
shows promising performance over a series of real and simulated
data.

I. INTRODUCTION

Data clustering is a very important and challenging topic in
machine learning. It aims to capture the structure of a dataset
by creating clusters of similar elements based on a similarity
measure. However applying clustering methodologies in high
dimensional data is often a very difficult task due to the
sparsity of the high dimensional spaces. This problem is
known as the “curse of dimensionality” [1]. The most common
technique to deal with such high dimensional datasets is to
reduce their dimensionality by projecting the dataset onto
a lower dimensional subspace. Projection pursuit [2] is the
procedure of finding “interesting” projections for a dataset,
i.e. directions that maintain its structure and at the same
time reduce its dimensionality. This can be consider as an
optimization task over the space of the projection directions,
where one have to optimize the interestingness criterion.

Several measures of interestingness can be found in the
literature. It has been argued by Huber [3] and by Jones and
Sibson [4] that the direction in which the projected data are
Gaussian distributed is the least interesting one, while the most
interesting directions are those that exhibit the least Gaussian
distribution. Classical measure of non-gaussianity are kurtosis
and the fourth-order cumulant. The most widely used type
of projection pursuit is the Principal Component Analysis
(PCA) [5]. The interestingness criterion of the PCA is the
variance of the projected data.

Motivated by a recently proposed hierarchical clustering
technique developed in [6], we introduce a new interestingness
criterion based on data cluster’s separability. Its main charac-
teristic is that incorporates information from the density of the
projected data. In turn, we integrate the aforementioned in-
terestingness criterion into a hierarchical clustering technique
and create a new clustering algorithm. To efficiently tackle

the optimization task for the projection pursuit procedure, we
employ a stochastic optimization methodology, namely the
Differential Evolution (DE) algorithm [7].

The remaining of the paper is structured as follows: In
Section II, we give background material. Next, in Section III
we examine the projection pursuit optimization problem and
propose a new measure of interestingness. Section IV is
devoted to the utilized optimization method. In Section V,
we present a new hierarchical clustering algorithm and in
Section VI we investigate the efficiency of the proposed
technique. The paper ends with concluding remarks.

II. BACKGROUND MATERIAL

The “divisive” hierarchical clustering techniques produce
a nested sequence of partitions, with a single, all-inclusive
cluster at the top. Starting from this all-inclusive cluster the
nested sequence of partitions is constructed by iteratively
splitting clusters, until a termination criterion is satisfied. The
operation of each algorithm can be understood, by the manner
in which they answer the following questions:

Q1: Which cluster to split further?
Q2: How to split the selected cluster?
Q3: When should the iteration terminate?

As this work is based on the recently proposed hierarchical
clustering algorithm, dePDDP [6], for completeness purposes
we will briefly describe it in the following subsection.

A. The dePDDP algorithm

The main characteristic of the dePDDP algorithm is that it
incorporates information from the density of the projected data
onto the first principal component. The dePDDP procedure
suggests that the best we can do to avoid splitting clusters
is to split the data based on the global minimizer of the
estimated density of the projected data onto the first principal
component. The cluster selection criterion and the termination
criterion are guided by the same idea.

To formally describe how the high dimensional data are
projected onto a lower dimensional space, let us assume the
data at hand is represented by an n×a matrix D, in which each
row represents a data sample di, i = 1, . . . , n, and a denotes
the dimensionality. Let A be the matrix which columns are
the vectors that denote the targeted subspace, then

DP
n×k = Dn×aAa×k,



is the projection of the data onto the lower k-dimensional
subspace defined by the matrix A. In the case of projection
pursuit procedure the targeted subspace is denoted by a 1× a
vector a and DP

n×1 is the projection of the data onto the one-
dimensional direction which is determined by a.

In the case of dePDDP the projection method used is the
PCA. If we define the vector b and matrix Σ to represent the
mean vector and the covariance of the data respectively:

b =
1

n

n∑
i=1

di, Σ =
1

n
(D − be)>(D − be),

where e is a column vector of ones. The covariance matrix Σ
is symmetric and positive semi-definite, so all its eigenvalues
are real and non-negative. The eigenvectors uj , j = 1, . . . , k,
corresponding to the k largest eigenvalues, are called the
principal components or principal directions. The dePDDP
algorithm use the projections pi:

pi = u1(di − b), i = 1, . . . , n,

onto the first principal component u1, to initially separate the
entire data set into two partitions P1 and P2 based on a global
minimizer defined in 2.1 as follows:

Definition 2.1: (Global Minimiser) A global minimizer x∗

is a point of R such that f̂ ′(x∗;h′) = minx X , where X =
{x ∈ R : ∃δ > 0, f̂ ′(x+δ;h′) > f̂ ′(x;h′) and f̂ ′(x−δ;h′) >
f̂ ′(x;h′)},
where f̂ ′(x;h′) is the kernel density estimation of the density
of the projected data onto the first principal component.

To demonstrate the intuition behind dePDDP, in Fig. 1
we illustrate a 2-dimensional example with the associated
principal components and an approximation of the estimated
density of the projection on the principal component.

Fig. 1. An illustrative example of dePDDP.

III. DENSITY-BASED PROJECTION PURSUIT

Before describing the proposed projection pursuit method,
we need to define the optimization space. As we are interested
of one-dimensional projections of the data, we can restrict the
optimization space to the half part of a unit hyper-sphere.

For example, in the two dimensional space, the space of
all possible directions can be first restricted to the vectors

0π

δ

Fig. 2. Example of the projection direction space in the two (left) and three
(right) dimensional cases.

on the unity circle as vectors with different lengths produce
the same direction. Also as the symmetric vectors define the
same directions, the projection direction space can be further
bounded in the half unit circle.

As such the optimization space for the two dimensional
case can be defined with the help of polar coordinates. Let θ
be the angular coordinate such that θ ∈ [0, π] and the radial
coordinate δ = 1, then for any direction [x, y] holds that x =
δ cos θ and y = δ sin θ (see Figure 2 (left)). Similarly, in the
three dimensional case the optimization space can be defined
by the vectors on the surface of the half part of a unit sphere.
To explain better the three dimensional case, we visualize the
optimization space in Figure 2 (right).

Having defined the optimization space, the main goal is to
find an optimizer, i.e. the best direction to project our data.
PCA utilizes the variance of the projected data as a quality
criterion, and assumes that the direction that maximizes it
is the most appropriate. This turns out to be the principal
direction of the data. Although PCA is a very effective
technique, there are cases where the structure of the projected
data onto the principal direction does not capture the data
clustering structure. To illustrate such a case we employ
a two dimensional dataset shown at Figure 3 (left). The
projected data onto the principal component, as well as their
corresponding density, are illustrated at Figure 3 (center). As
expected, based on the dePDDP algorithm splitting criterion,
we would be unable to appropriately split the data into clusters,
because the density of the projected data has no minima.

To examine the optimization task of the PCA in this dataset,
we can observe the quality criterion of the projected data for
several directions (angular coordinate θ), in Figure 3 (right).
The maximum variance direction is very evident and stable,
but although the corresponding projection fails to capture the
clustering structure.

Recently, in [8] we have introduced such a quality cri-
terion guided by the minimizer of the density function of
the projected data. A lower density value of the minimizer
would determine a better direction [8]. However, no matter
how coherent a dataset is, it is very common that there is a
projection direction for which the projected data will contain
outlying points. In those points, the density of the data will be
very small and the particular direction would be recognised as
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Fig. 3. The two–dimensional dataset with the principal direction (left). The projections onto the principal direction along with their densities (center) and
The optimization quality criterion (right).
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Fig. 4. The proposed quality criterion

a good one, irrespective of what happens to the bulk of the
data. In such a case, the whole procedure could be guided by
the outlying points. The aforementioned behavior leads to a
hierarchical clustering algorithm that splits a dataset first to
all the outlying points before it actually splits actual clusters.

In this work, we propose a new quality criterion, i.e. a new
objective function that is able to avoid this problem. As long
as we locate the minimizer x∗ of the projected data onto a
particular direction, we retrieve the maximum value of the
density at the left (M1) and right (M2) side of the minimizer.
The new quality criterion is defined as the difference between
the density values of the splitting point and the minimum of
M1 and M2 density values. Formally:

Definition 3.1: (Quality Criterion): Let u be any vector
of Ra with ‖u‖ = 1, P be the set of projections pi of the
vectors di onto u, f̂ ′(x;h′) be the kernel density estimation
of the projections pi ∈ P , and x? its global minimizer as
defined in Definition 2.1. Let M1 and M2 be the maximum
density value at the left and the right sides of x? respectively
and M = max{M1,M2}. The Quality Criterion is a function
QC : Ra → R of u such that

QC(u) = f̂ ′(M ;h′)− f̂ ′(x?;h′)

We refer to this quality criterion as depth (see Figure 4).
Using the depth criterion the Projection Pursuit problem can
be formally defined as follows.

Definition 3.2: (Best Depth Projection Direction Prob-
lem): Let U = {u ∈ Ra : ‖u‖ = 1} represent the space
of projection directions. Then the problem of finding the best
depth projection direction resorts to finding the maximum uopt

of the projection directions space U , i.e. the vector uopt ∈ U

such that:
QC(uopt) > QC(u), ∀u ∈ U . (1)

To exhibit the behavior of the proposed best depth projection
direction methodology, we employ the two dimensional dataset
used at the previous example. At the left side of Figure 5,
we illustrate the best depth direction as well as the principal
direction of the data set. The projected data and their cor-
responding density values onto the best depth direction are
demonstrated at Figure 5 (center). As shown, this direction
conveniently makes the projected data density to contain a
minimum between the points of the two actual clusters. This
is particularly very well suited for the dePDDP algorithm, as
the splitting criterion used by that algorithm would effectively
split the actual data clusters.

Similarly, for further visual understanding, we employ a
three dimensional dataset constituted by two clusters of differ-
ent sizes (see Figure 6). Figure 6 (left) illustrates the dataset
along with the principal and the chosen best depth direction,
while their projections and their corresponding densities are
demonstrated at the center and right of Figure 6, respectively.
Finally, Figure 7 (right) reports the landscape of the three
dimensional optimization space and its optimal value. As
show, the optimization landscape becomes more challenging
as the dimensionality grows, since it is non-differentiable and
highly multimodal. For this reason the utilization of a global
optimization algorithm is essential.

IV. DIFFERENTIAL EVOLUTION

We attempt to tackle the aforementioned optimization prob-
lem using the Differential Evolution (DE) Algorithm [7]. DE
is a stochastic parallel direct search method, which utilizes
concepts borrowed from the broad class of Evolutionary Al-
gorithms (EAs). DE is capable of handling non-differentiable,
discontinuous, non-linear, noisy and highly multimodal objec-
tive functions, which makes it a suitable choice to handle the
aforementioned landscapes.

More specifically, DE is a population–based stochastic al-
gorithm that exploits a population of NP potential solutions,
individuals, to effectively probe the optimization space. DE
randomly initializes the population in the D–dimensional op-
timization domain through a uniform probability distribution.
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Fig. 5. The two–dimensional dataset with the principal and the best depth direction (left). The projections onto best depth direction along with their densities
(center) and the depth quality criterion values (right) for each direction.
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Fig. 6. The three–dimensional dataset with the principal and the best depth direction (left). The projections onto the principal direction (center) and the best
depth direction (right) along with their densities.

Fig. 7. The best depth optimization landscape of the three–dimensional
dataset along with its optimum point.

Individuals evolve over successive steps to explore promising
regions of the search space and locate the minima of the
objective function. The user–defined population size, NP ,
is fixed throughout the evolution process. At each iteration,
called generation, new vectors are derived by the combination
of randomly chosen vectors from the current population. This
operation in our context can be referred to as mutation,
while the outcoming vectors as mutant individuals. Several

mutation strategies have been proposed in the DE literature.
The most common and widely used can be found in [7], [9]–
[11]. Afterwards, each mutant individual is then mixed with
another vector – the target vector – through an operation called
recombination or crossover, which yields the so–called trial
vector. The most well known and widely used variants of
DE utilize two main crossover schemes; the exponential and
the binomial crossover [7], [9], [10]. Finally, the trial vector
undergoes the selection operator, according to which, it is
accepted as a member of the population of the next generation
only if it yields a reduction in the value of the objective
function f relative to that of the target vector. Alternatively,
the target vector is retained in the next generation. The search
operators efficiently guide the population to search for an
optimum and focus on the most promising regions of the
solution space. A more comprehensive description of the DE
can be found in [7], [9]–[11].

More specifically, for each individual xig, i = 1, 2, . . . , NP,
where g denotes the current generation, the mutant individual
vig+1 can be generated through several mutation strategies [11]
with different characteristics. The most known and widely
used mutation strategy acts in accordance with the following
equation:

vig+1 = xr1g + F (xr2g − xr3g ), (2)

where F > 0 is a real parameter, called mutation constant
and r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,NP}, are
random integers mutually different and not equal to the



running index i. The mutation constant, controls the impact of
the difference between the last two individuals and is mainly
responsible for the convergence rate of the algorithm [9].

In turn, the recombination operator is applied to further
increase the diversity of the population. The outcome of the
recombination operation are trial vectors which are a com-
bination of the mutant individuals with other predetermined
individuals, called the target individuals. In detail, for each
component l (l = 1, 2, . . . , D) of the mutant individual vig+1,
we uniformly choose a real number r in the interval [0, 1]
and compare this number with the predefined recombination
constant, CR. If r 6 CR, we select, as the l–th component
of the trial individual uig+1, the l–th component of the mutant
individual vig+1. Otherwise, the l–th component of the target
vector xig becomes the l–th component of the trial vector.
Finally, the trial individual is accepted for the next generation
only if it reduces the value of the objective function at hand
(selection operator).

In this context, we try to tackle the optimization problem
defined in Definition 3.2, where the optimization search space
is the space of all possible projections, i.e. U ⊂ Ra. It should
be noticed that we do not constrain the individuals of the
population to lie in U . Instead, we let them lie in Ra. However,
when we evaluate the QC(·), we transform the trial individuals
uig to úig = uig/‖uig‖ and evaluate QC(úig) instead.

V. THE PROPOSED CLUSTERING ALGORITHM

In this Section, we introduce a new algorithmic scheme
based on the principles of the dePDDP algorithm. The new
technique utilizes the depth quality criterion proposed in
Section III to guide a projection pursuit method. As already
mentioned, for finding the best depth direction over the space
of all possible ones, we use the DE optimization algorithm
described above. After projecting the data onto the direction of
maximum depth the algorithm splits them based on the global
minimizer x∗. More specifically, the new divisive hierarchical
clustering algorithm, given the name DBPPC (Density Based
Projection Pursuit Clustering) utilizes the following criteria:
• (Stopping Criterion) ST : Let Π = {{Ci, Pi}, i =

1, . . . , k} a partition of the data set D into k sets Ci, and
the assorted projections Pi of them onto the direction of
maximum depth. Let X , be the set of minimizers x∗i of
the density estimates f̂(x∗i ;h) of the projection Pi of the
data of each Ci ∈ Π, i = 1, . . . , k. Stop the procedure
when the set X is empty.

• (Cluster Selection Criterion) CS: Let Π = {{Ci, Pi}, i =
1, . . . , k} a partition of the data set D into k sets Ci, and
the assorted projections Pi of them onto the direction of
maximum depth. Let F be the set of the density estimates
fi = f̂(x∗i ;h) of the minimizers x∗i for the projection Pi

of the data of each Ci ∈ Π, i = 1, . . . , k. The next set to
split is Cj , with j = arg mini{fi : fi ∈ F}.

• (Splitting Criterion) SPC: Let f̂ ′(x;h′) be the kernel
density estimation of the density of the projections pi ∈
P , and x? its global minimizer. Then construct P1 =
{di ∈ D : pi 6 x?} and P2 = {di ∈ D : pi > x?}.

Algorithm 1 The DBPPC algorithm summary.
1: Set Π = {D}
2: repeat
3: Select a set C ∈ Π, using cluster selection criterion CS
4: Split C into two sub-sets C1 and C2 using Splitting

Criterion SPC
5: Remove C from Π and set Π→ Π ∪ {C1, C2}
6: until Stopping Criterion ST is not satisfied
7: Return Π the partition of D into |Π| clusters

Based on that criteria Algorithm 1 reports the complete
algorithmic scheme.

VI. EXPERIMENTAL RESULTS

In this section, we perform an experimental evaluation of the
proposed clustering algorithm. At the first part of our experi-
mental analysis, we employ a series of simulated datasets to
examine the performance of the proposed methodology. This
gives the opportunity to pre-design (and hence know before-
hand) the structure of the data that the clustering procedure
aims to recover. This kind of artificial cluster construction
method is typically used in similar empirical evaluations [12],
[13].

In an attempt to construct datasets which are constituted by
clusters of random shapes, we employ the following procedure.
The actual clusters are composed by independent univariate
Beta distributions, one for each dimension, of which the shape
parameters are drawn at random uniformly in a specified
interval. After drawing 100 points for each cluster, the data
of each one is rescaled by a random factor and subsequently
randomly repositioned. This data generation mechanism gen-
erates clusters of random shapes depending on the values of
the parameters of the Beta distributions. We will refer to this
data generation mechanism as DSETBeta.

To assess the quality of a data partition, we use the class
labels which are not available to the clustering algorithms. We
measure the degree of correspondence between the resulting
clusters and the classes of each object. In detail, let L be the
set of class labels li ∈ L, for each point di ∈ D, i = 1, . . . , n,
with li taking values in {1, . . . , L} we define the purity of a
k-cluster partitioning as Π = {C1, . . . , Ck}. The purity of Π
is defined by the following formula:

p(Π) =

∑k
j=1 max {|{pi ∈ Cj : li = 1, . . . , L}|}

n
, (3)

so that 0 ≤ p(Π) ≤ 1. High values indicate that the majority
of vectors in each cluster come from the same class, so in
essence the partitioning is “pure” with respect to class labels.

However, cluster purity does not address the question of
whether all members of a given class are included in a single
cluster and therefore is expected to increase monotonically
with the number of clusters in the result. For this reason,
criteria like the V-measure [14] have been proposed. The V-
measure tries to capture cluster homogeneity and complete-
ness, which summarizes a clustering solution’s success in



TABLE I
MEAN PURITY FOR THE GENERATED DATASETS (WITH THE OBSERVED

STANDARD DEVIATION IN PARENTHESIS)

Dimension 5

No. Of Cl. dePDDP k-means DBSCAN GMM DBPPC
5 0.90 (0.23) 0.97 (0.05) 0.52 (0.23) 0.99 (0.02) 0.98 (0.05)
25 0.34 (0.15) 0.86 (0.03) 0.06 (0.03) 0.88 (0.04) 0.86 (0.04)

Dimension 25

No. Of Cl. dePDDP k-means DBSCAN GMM DBPPC
5 1.00 (0.17) 0.96 (0.08) 0.90 (0.10) 0.96 (0.07) 1.00 (0.00)
25 0.80 (0.39) 0.88 (0.03) 0.05 (0.02) 0.86 (0.04) 1.00 (0.00)

including every point of a single class and no others. Again,
high values corresponds to better performance. For details on
how these are calculated, the interested reader should refer
to [14].

We compare the performance of the proposed clustering
algorithm against four well known clustering algorithms,
namely dePDDP [6], k-means [15], DBSCAN [16], GMM.
Table I reports the purity and Table II the V-measure of
the algorithms in 100 randomly generated datasets, using the
described DSETbeta mechanism. The clustering algorithms
have been implemented in the Matlab environment. For the
k-means algorithm, we employ Matlab’s k-means functions.
For the DBSCAN algorithm the eps (neighborhood radius)
parameter was set to the default value given in [16] and the k
(number of objects in a neighborhood of an object) parameter
was set to 5. The density estimation of the projected data in
the dePDDP and the DBPPC algorithms is calculated using the
Fast Gauss Transform [17]. As proposed in [6], the bandwidth
parameter for the density was set by choosing a multiple of
the hopt bandwidth (“normal reference rule”), which is the
bandwidth that minimizes the Mean Integrated Squared Error
(MISE). This is given by:

hopt = σ

(
4

3n

)1/5

,

where σ is the standard deviation of the data. The multiple
was set to 4 for these experiments.

To facilitate a more direct understanding of the results,
we will use two 2-dimensional datasets constructed with the
DSETbeta mechanism and will resort to visual inspection
(Figures 8 and 9). As shown for the dataset of Figure 8 only the
DBPPC algorithm manages to retrieve all the actual clusters.
Although more than 3 clusters have been retrieved, none of
the sub-clusters contain elements that belong to more than
one actual cluster. In Figure 9, the second dataset is a typical
case, where projecting the data onto the principal direction
is not considered to be a good projection and as expected
dePDDP fails to split the data. On the other hand, the DBPPC
algorithms manage to split the data effectively.

A. Real Data Application

In this section, we study the performance of the proposed
method against the aforementioned clustering algorithms in

TABLE II
MEAN V-MEASURE FOR THE GENERATED DATASETS (WITH THE

OBSERVED STANDARD DEVIATION IN PARENTHESIS)

Dimension 5

No. Of Cl. dePDDP k-means DBSCAN GMM DBPPC
5 0.91 (0.19) 0.95 (0.06) 0.56 (0.33) 0.98 (0.04) 0.94 (0.05)
25 0.44 (0.21) 0.90 (0.02) 0.04 (0.07) 0.93 (0.02) 0.88 (0.03)

Dimension 25

No. Of Cl. dePDDP k-means DBSCAN GMM DBPPC
5 1.00 (0.22) 0.97 (0.05) 0.95 (0.05) 0.96 (0.06) 0.98 (0.02)
25 0.82 (0.42) 0.96 (0.01) 0.03 (0.05) 0.94 (0.01) 0.98 (0.01)

real world applications. For this purpose, we employ two
biomedical datasets from the UCI Machine Learning Reposi-
tory [18], the Breast Canser dataset and the Vertebral dataset,
and two microarray datasets, the Leukemia [19] and the
Lymphoma [20] datasets. A brief description for each dataset
is reported below.
• (BREAST CANCER): This breast cancer database was

obtained from the University of Wisconsin Hospitals,
Madison from Dr. William H. Wolberg. There are 369
instances in this dataset, described though 10 features.
Each instance has one of 2 possible classes: benign or
malignant. There are 16 instances that contain a single
missing (i.e. unavailable) attribute value that we arbitrary
set to 0.

• (VERTEBRAL): This biomedical data set was built
by Dr. Henrique da Mota during a medical residence
period in the Group of Applied Research in Or-
thopaedics (GARO) of the Centre Médico-Chirurgical
de Réadaptation des Massues, Lyon, France. There are
310 instances in this dataset that corresponds to patients,
described though 6 biomechanical attributes. Each patient
belongs to one out of three categories: Normal (100
patients), Disk Hernia (60 patients) or Spondylolisthesis
(150 patients).

• (LEYKEMIA): The dataset is the one used by Handl et
al. [19] in their survey of computational cluster validation
to illustrate the use of some measures. It is a 38 × 100
data matrix, where each row corresponds to a patient
with acute leukemia and each column to a gene. For this
dataset, there are three actual clusters.

• (LYMPHOMA): The dataset comes from the study of
Alizadeh et al. [20] on the three most common adult
lymphoma tumors. It is an 80× 100 matrix, where each
row corresponds to a tissue sample and each column
to a gene. There are three clusters in the dataset. The
dataset has been obtained from the original microarray
experiments as described by Dudoit and Fridlyand in [21].

For this experiment the actual number of clusters was also
given as input to the dePDDP and DBPPC algorithms and the
multiple value for the bandwidth parameter was set recursively
to 4. If the algorithm cannot split the initial dataset, we
decrease this parameter by 1/4. As shown at Table III, the
DBPPC algorithm’s performance remains high in all cases.
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Fig. 8. Clustering Results for a two dimensional dataset

DBPPC dePDDP K−means

GMM DBSCAN Real Clusters

Fig. 9. Clustering Results for a two dimensional dataset

For the Vertebral and the Leukemia datasets, since the DBPPC
splits only a few outliers at the first algorithmic steps, we let
the algorithm retrieve a few more than the actual clusters.
Note that this is not an uncommon procedure for this type of
clustering algorithms. To have comparable results, we assign
the same number of clusters as input to all methods. It is

important to note that dePDDP algorithm although it is very
effective for the first three cases, it does not manage to split
the Vertebral dataset at all. GMM is producing good results
as well, but it is unable to operate on the first two datasets,
because of their dimensionality. On the other hand, DBPPC
performs efficiently in comparison with the other methods. It



TABLE III
RESULTS WITH RESPECT TO THE MEAN CLUSTERING PURITY AND

V-MEASURE (WITH THE OBSERVED STANDARD DEVIATION IN
PARENTHESIS)

Dataset Leukemia Lymphoma Breast-Cancer Vertebral

Classes 3 3 2 3

Cl. 4 3 3 ...

dePDDP Pur. 0.9737 0.8375 0.9714 ...

V-m. 0.8369 0.5885 0.8051 ...

Cl. 4 3 2 5

k-means Pur. 0.9695(0.01) 0.8413(0.04) 0.9585(0.00) 0.7383(0.01)

V-m. 0.8201(0.02) 0.5826(0.09) 0.7361(0.00) 0.4023(0.00)

Cl. 2 2 2 2

DBSCAN Pur. 0.6053 0.5250 0.7883 0.4839

V-m. 0.2782 0.1088 0.2614 0.0044

Cl. ... ... 2 3

GMM Pur. ... ... 0.8741(0.00) 0.7678(0.00)

V-m. ... ... 0.5553(0.00) 0.4540(0.03)

Cl. 4 3 2 5

DBPPC Pur. 0.9395(0.01) 0.8750(0.00) 0.9605(0.00) 0.7461(0.02)

V-m. 0.7010(0.03) 0.6924(0.03) 0.7470(0.03) 0.4937(0.05)

is notable that the DBPPC algorithm’s performance remains
stable across all the different datasets, while all the other
considered methods, at least one of the cases, fail to retrieve
good results.

VII. CONCLUSION

Clustering of high dimensional data is a topic of main
interest in several research areas such as Bioinformatics and
Text Mining. Typically, algorithms in order to deal with
such datasets, project the high dimensional data onto a lower
dimensional space. To find suitable projections, methods like
projection pursuit and PCA have been developed. In the same
theme, here we introduce a new measure of interestingness
(quality criterion) of projection directions and for each prob-
lem we use the Differential Evolution algorithm to optimize it.
Finally, a new clustering algorithm is proposed with promising
performance in simulated and real world clustering applica-
tions.

In a future research we intend to investigate the theoretical
aspects of the proposed method and to extend the application
domain of the new algorithm in additional real world prob-
lems.
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