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ABSTRACT

The Differential Evolution algorithm uses an elitist selec-
tion, constantly pushing the population in a strict downhill
search, in an attempt to guarantee the conservation of the
best individuals. However, when this operator is combined
with an exploitive mutation operator can lead to premature
convergence to an undesired region of attraction. To allevi-
ate this problem, we propose the Non-Monotone Differential
Evolution algorithm. To this end, we allow the best individ-
ual to perform some uphill movements, greatly enhancing
the exploration of the search space. This approach further
aids algorithm’s ability to escape undesired regions of the
search space and improves its performance. The proposed
approach utilizes already computed pieces of information
and does not require extra function evaluations. Experi-
mental results indicate that the proposed approach provides
stable and reliable convergence.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; 1.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and
Search—heuristic methods

General Terms

Algorithms
Keywords

Evolutionary Algorithms, Differential Evolution, Non-Mono-
tone Differential Evolution, Global Optimization

1. NON-MONOTONE DIFFERENTIAL
EVOLUTION (NMDE)

The main features of Differential Evolution (DE) [2] are
its simplicity, fastness and robustness. Although various DE
mutation operators have been proposed, they have different
impact on the exploration of the search space. Additionally,
the selection operator, which dictates monotone decrease of
the function values, provides an efficient and effective way
to ensure that the objective function is reduced sufficiently.
However, it has the disadvantage that no information, which
might accelerate convergence, is stored and utilized. In ex-
treme cases, an exploitive mutation operator, combined with
the elitist selection operator, can lead to premature con-
vergence of the population. The same effect has the poor
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selection of DE’s control parameters. For example, if the
mutation rate is too high, much of the search space will be
explored, but there is a high possibility of losing promising
solutions; the algorithm has difficulty to converge to an opti-
mum due to insufficient exploitation. To alleviate this situ-
ation, we propose the Non-Monotone DE (NMDE) selection
operator applied on the best individual of each generation,
exploiting the accumulated information with regard to the
most recent function values of the best individual. To this
end, we allow the best individual to perform some uphill
movements, i.e. the fitness of the best individual is allowed
to increase at some generations.

In this paper, we demonstrate the application of the NMDE
operator on the DE/best/1 and the DE/best/2 algorithms [2].
It is evident that when using operators that utilize the best
individual as their base vector, the selection of the best in-
dividual is crucial to the evolution of the population. We
argue that the selection of the best individual must satisfy
a non-monotone criterion with respect to the maximum fit-
ness of the M previous best individuals of the population.
Parameter M is called the non-monotone horizon. More
specifically, the best individual must satisfy the following
equation:

best best
f u < max f u :
( g+1) X Ogsz{ ( g*])}?

where the non-monotone horizon M is a small non-negative
integer and u;f?ff is the newly assigned best individual. Lar-
ger values of M allow better search space exploration. Thus,
in difficult multimodal objective functions larger values of M
are recommended. On the other hand, objective functions
possessing only a few minima can be solved using smaller
values of M. A deterministic non-monotone learning strat-
egy of similar conception for neural network training has
been proposed in [1].

Furthermore, at the top of Table 1 the algorithmic scheme
for the proposed approach is outlined, while at the bottom
the SelectBestIndividual() procedure exhibits the imple-
mentation of the non-monotone criterion. Additionally, in
Figure 1 the fitness of the best individual is illustrated for
DE/best/1 applied on Levy No. 5 test function with non-
monotone horizon M = 5. It is clear that although at some
generations the fitness of the best individual is allowed to
increase, the modified DE algorithm converges to the global
minimum of the objective function.

2. EXPERIMENTAL RESULTS

We implemented and tested the proposed NMDE algo-
rithm on a large number of optimization benchmarks. In



Table 1: NMDE: the proposed approach
Begin
Initialize the population of NP individuals
Evaluate the fitness of each individual
Repeat
For i =1 to NP Do
Mutation(z}) — Mutant},
Recombination(Mutant,) — Trial’
If f(Trial}) < f(z,) Then
accept Trialf, for the next generation
EndIf
11: SelectBestIndividual()
11: EndFor
12:  Until the termination criteria are satisfied
13: End

Function SelectBestIndividual()

—_

0: Begin

L IF f(ubs)) < maxocj<nm{f(ug®!)} Then

2: assign ugff as best for the next generation
3: EndIf

4: End

this study, due to space limitations, we report experimen-
tal results of eight well-known minimization test functions.
For each test function and each mutation operator, we have
conducted 1000 independent runs and have used the fixed
values of F' = 0.5 and CR = 0.7 as the DE mutation and
crossover constants respectively.

To evaluate the proposed NMDE, we compared its perfor-
mance on eight test functions [3]. For each test function we
experimented using ten values for the non-monotone hori-
zon, M = 1,2,...,10. It is evident that, when M = 1
only monotone evolution of the best is performed and the
algorithm is identical to the original DE/best/num, num =
1,2. Figure 2 illustrates the average function evaluations
and the corresponding success rates for the non-monotone
DE/best/1 and DE/best/2 algorithms. The experimental
results on the eight test functions indicate that the proposed
approach exhibits better success rates than the original DE
algorithm, at the expense of a slight increase of the average
function evaluations required.

To conclude, the proposed approach enhances DE’s ability
to accurately locate solutions in the search space and to
escape undesired regions of attraction, leading in increased
success rate. Non-Monotone Differential Evolution performs
consistently and reasonably well for different test functions,
and potentially, alleviates problems such as the decreased
rate of convergence, divergence and premature saturation.
Thus, for an unknown optimization problem the application
of the non-monotone DE is recommended.
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Figure 1: DE/best/1: Fitness value of the best in-

dividual (Levy No. 5, non-monotone horizon = 5)
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Figure 2: Average number of function evalua-
tions and success percentage for DE/best/1 and
DE /best/2 (non-monotone horizon values 1 to 10)



